+0  
 
0
659
3
avatar+179 

Any hints or pointers for these problems would be appreciated. 

 

1. Let \(X, Y,\) and \(Z\) be points on a circle. Let \(\overline{XY} \) and the tangent to the circle at \(Z\) intersect at \(W\) . If \(WX = 4\)\(WZ = 8\), and \(\overline{WY} \perp \overline{WZ}\), then find \(YZ.\)

 

2. Let \(\overline{AB}\) and \(\overline{CD}\) be the chords of a circle, then meet at point \(Q\) inside of the circle. If \(AQ = 6, BQ = 12, \) and \(CD = 38\), then find the minimum length of \(CQ\)

 Oct 21, 2020
 #1
avatar
0

1. By power of a point, XY = 7*sqrt(3).

 

2. By power of a point, the minimum length of CQ is 6.

 Oct 21, 2020
 #2
avatar+179 
+1

Can you explain more?

xCorrosive  Oct 21, 2020

0 Online Users