+0  
 
0
69
1
avatar

Consider two positive even integers less than 15 (not necessarily distinct). When the sum of these two numbers is added to their product, how many different possible values may result?

Guest Jan 17, 2018
Sort: 

1+0 Answers

 #1
avatar+82937 
+1

[2 +2] +  2*2  =  8             [4 + 4] + 4*4  = 24          [ 6 + 6 ] + 6*6  = 48

[2 + 4]  + 2*4  = 14           [4 + 6] +  4*6  = 34          [6 + 8 ]  +  6*8  =  62

[2 + 6] +  2*6  =  20          [4 + 8 ] + 4*8  = 44          [ 6 + 10] + 6*10  = 76

[2 + 8]  +  2*8  = 26          [4 + 10 ] + 4*10  = 54      [6 + 12] + 6*12  = 90

[2 + 10] + 2*10  =  32       [ 4 + 12] + 4*12  = 64      [6 + 14] + 6 * 14 = 104

[2 + 12] + 2*12  = 38        [4 + 14 ] + 4*14  = 74

[ 2 + 14] + 2*14  = 44

 

[8 + 8 ]  + 8* 8  =  80         [ 10 + 10] + 10*10  = 120     [12 + 12] + 12*12 = 168

[ 8 + 10] + 8*10  = 98        [10 + 12] + 10*12  =  142     [ 12 + 14] +  12*14  = 194

[8 + 12] + 8*12  = 116       [10 + 14] + 10*14 =   164

[8 + 14]  + 8*14 = 134

 

[14 + 14]  +  14*14  =  224

 

 

Total  different values  =  7 + 5 + 5 + 4 + 3 + 2 + 1  =     27

 

 

cool cool cool

CPhill  Jan 17, 2018
edited by CPhill  Jan 17, 2018

7 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details