We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
128
3
avatar+1196 

If \(t\) is a real number, what is the maximum possible value of the expression \(-t^2 + 8t -4\)?

 Jul 28, 2019
 #1
avatar+104937 
+1

We have the form  at^2 + bt + c   where   a  = -1   and b  =  8

This is a parabola that turns downward.....the y value of the vertex will be the max 

The "t"  value of the vertex =   -b / [ 2a ]  =  - [ 8 ] / [2 (-1) ]  = -8/ -2  = 4

 

So......the max value is    -(4)^2 + 8(4) - 4   =   -16 + 32 - 4  =   -16 + 28  =  12

 

The vertex = ( t, y)  = (4, 12)

 

Here's the graph showing this : https://www.desmos.com/calculator/6grvgwmlqj

 

 

cool cool cool

 Jul 28, 2019
 #2
avatar+1196 
+1

Thanks CPhill! 

 Jul 28, 2019
 #3
avatar+140 
+3

We can also complete the square. We can factor out a -1 from the given expression. We have -(t^2-8t+4).  We can work inside the parenthesis. We can try to make the quadratic a perfect square. We have: t^2-8t+4=(t-4)^2-16+4=(t-4)^2-12. Remember the negative ;) We now have: -(t^2-4)^2+12. Since the negative of a positive number (a square) is always negative, the maximum it can be is 0. Therefore, the only possible maximum is 12. Hope this gives helpful insight :)

 Jul 28, 2019

10 Online Users