Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1
2023
2
avatar+9675 

x=1+ilnx=12ln(1+i)=12(ln|1+i|+iarg(1+i))=12(ln2+iπ4)=ln2+iπ8x=eln2+iπ/8=2+cosπ/8+isinπ/8=2+2+22+i222

 Feb 9, 2017

Best Answer 

 #2
avatar+26396 
+5

Complex root:

 

x=1+ilnx=12ln(1+i)2lnx=ln(1+i)=ln(|1+i|)+iarg(1+i)||1+i|=12+12=2=ln(2)+iarg(1+i)|arg(1+i)=arctan(11)=π4=ln(2)+iπ42lnx=ln(2)+iπ4|:2lnx=12ln(2)+iπ8=ln(2)+iπ8lnx=ln(42)+iπ8x=eln(42)+iπ8=eln(42)eiπ8x=42eiπ8x1=42(cosπ8+isinπ8)cosπ8=122+2sinπ8=1222x1=42(122+2+i1222)x1=422+22+i42222x2=x1x2=422+22i42222

 

x11.09868+0.45509ix21.098680.45509i

 

laugh

 Feb 9, 2017
edited by heureka  Feb 9, 2017
 #1
avatar
+10

Easier to convert to polar form and then use de Moivre's theorem, (cos x   +  i sin x)^n

= (cos nx  + i sin nx)

 

(1 + i )   = sqrt2( cos pi/4   + isin pi/4)

(1 + i)^1/2   = {(sqrt2)^1/2 }(cos pi/8  +i sin pi/8) 

 Feb 9, 2017
 #2
avatar+26396 
+5
Best Answer

Complex root:

 

x=1+ilnx=12ln(1+i)2lnx=ln(1+i)=ln(|1+i|)+iarg(1+i)||1+i|=12+12=2=ln(2)+iarg(1+i)|arg(1+i)=arctan(11)=π4=ln(2)+iπ42lnx=ln(2)+iπ4|:2lnx=12ln(2)+iπ8=ln(2)+iπ8lnx=ln(42)+iπ8x=eln(42)+iπ8=eln(42)eiπ8x=42eiπ8x1=42(cosπ8+isinπ8)cosπ8=122+2sinπ8=1222x1=42(122+2+i1222)x1=422+22+i42222x2=x1x2=422+22i42222

 

x11.09868+0.45509ix21.098680.45509i

 

laugh

heureka Feb 9, 2017
edited by heureka  Feb 9, 2017

3 Online Users

avatar