x=√1+ilnx=12ln(1+i)=12(ln|1+i|+iarg(1+i))=12(ln2+iπ4)=ln√2+iπ8x=eln√2+iπ/8=√2+cosπ/8+isinπ/8=√2+√2+√22+i√2−√22
Complex root:
x=√1+ilnx=12⋅ln(1+i)2⋅lnx=ln(1+i)=ln(|1+i|)+iarg(1+i)||1+i|=√12+12=√2=ln(√2)+i⋅arg(1+i)|arg(1+i)=arctan(11)=π4=ln(√2)+i⋅π42⋅lnx=ln(√2)+i⋅π4|:2lnx=12⋅ln(√2)+iπ8=ln(√√2)+iπ8lnx=ln(4√2)+iπ8x=eln(4√2)+iπ8=eln(4√2)eiπ8x=4√2⋅eiπ8x1=4√2⋅(cosπ8+i⋅sinπ8)cosπ8=12⋅√2+√2sinπ8=12⋅√2−√2x1=4√2⋅(12⋅√2+√2+i⋅12⋅√2−√2)x1=4√2⋅√2+√22+i⋅4√2⋅√2−√22x2=−x1x2=−4√2⋅√2+√22−i⋅4√2⋅√2−√22
x1≈1.09868+0.45509ix2≈−1.09868−0.45509i
Easier to convert to polar form and then use de Moivre's theorem, (cos x + i sin x)^n
= (cos nx + i sin nx)
(1 + i ) = sqrt2( cos pi/4 + isin pi/4)
(1 + i)^1/2 = {(sqrt2)^1/2 }(cos pi/8 +i sin pi/8)
Complex root:
x=√1+ilnx=12⋅ln(1+i)2⋅lnx=ln(1+i)=ln(|1+i|)+iarg(1+i)||1+i|=√12+12=√2=ln(√2)+i⋅arg(1+i)|arg(1+i)=arctan(11)=π4=ln(√2)+i⋅π42⋅lnx=ln(√2)+i⋅π4|:2lnx=12⋅ln(√2)+iπ8=ln(√√2)+iπ8lnx=ln(4√2)+iπ8x=eln(4√2)+iπ8=eln(4√2)eiπ8x=4√2⋅eiπ8x1=4√2⋅(cosπ8+i⋅sinπ8)cosπ8=12⋅√2+√2sinπ8=12⋅√2−√2x1=4√2⋅(12⋅√2+√2+i⋅12⋅√2−√2)x1=4√2⋅√2+√22+i⋅4√2⋅√2−√22x2=−x1x2=−4√2⋅√2+√22−i⋅4√2⋅√2−√22
x1≈1.09868+0.45509ix2≈−1.09868−0.45509i