\(\frac{\sqrt{4x^3+3x^2-4x-3}}{\sqrt{9-x^2}}\qquad -3 4x^3+3x^2-4x-3=(x+1)(x+0.75)(x-1)\\ \text{This is only }\ge0 \text{ in the regions } [-1,-0.75]\;\;\; and \;\;\;[1,\infty)\\ so\\ \text{This cannot be greatly simplified}\\~\\ \frac{\sqrt{4x^3+3x^2-4x-3}}{\sqrt{9-x^2}}\\=\sqrt{\frac{4x^3+3x^2-4x-3}{9-x^2}} \\~\\ \text{In the real number system the restrictions on x are}\;\;\; [-1,-0.75]\;\;\; and \;\;\;[1,3)\\ \)
LaTex:
\frac{\sqrt{4x^3+3x^2-4x-3}}{\sqrt{9-x^2}}\qquad -3
4x^3+3x^2-4x-3=(x+1)(x+0.75)(x-1)\\
\text{This is only }\ge0 \text{ in the regions } [-1,-0.75]\;\;\; and \;\;\;[1,\infty)\\
so\\
\text{This cannot be greatly simplified}\\~\\
\frac{\sqrt{4x^3+3x^2-4x-3}}{\sqrt{9-x^2}}\\=\sqrt{\frac{4x^3+3x^2-4x-3}{9-x^2}} \\~\\
\text{In the real number system the restrictions on x are}\;\;\; [-1,-0.75]\;\;\; and \;\;\;[1,3)\\