√8−√55+√8+√55
This is a tough one!
First I am going to consider 8−√55
I want to express this as a perfect square.
8−√55=52−√55+112=2510−10√5510+5510=25−10√55+5510=52−10√55+(√55)210=(5−√55)210But(5−√55)2=(√55−5)2$andIwantthepositiveone,so$=(√55−5)210
\\Hence\\\\ \sqrt{8-\sqrt{55}}\\\\ =\sqrt{\frac{(\sqrt{55}-5)^2}{10}}\\\\ =\frac{\sqrt{55}-5}{\sqrt{10}}}\\\\ =\frac{\sqrt{10*55}-5\sqrt{10}}{10}\\\\ =\frac{\sqrt{2*5*5*11}-5\sqrt{10}}{10}\\\\ =\frac{5\sqrt{22}-5\sqrt{10}}{10}\\\\ =\frac{\sqrt{22}-\sqrt{10}}{2}\\\\
NOW, BY THE SAME LOGIC,
Hence√8+√55=√22+√102SO√8−√55+√8+√55=√22−√102+√22+√102=2√222=√22
.sqrt(8-sqrt(55))+sqrt(8+sqrt(55))
√8−√55+√8+√55|√x2=√(√8−√55+√8+√55)2=√(8−√55)+(8+√55)+2∗(√8−√55)∗(√8+√55)=√16+2∗(√8−√55)∗(√8+√55)=√16+2∗√82−55=√16+2∗√64−55=√16+2∗√9=√16+2∗3=√22=4.69041576