+0

# sqrt(8-sqrt(55))+sqrt(8+sqrt(55))

0
680
5

sqrt(8-sqrt(55))+sqrt(8+sqrt(55))

Jan 25, 2015

#3
+20805
+10

sqrt(8-sqrt(55))+sqrt(8+sqrt(55))

$$\sqrt{8-\sqrt{55}}+\sqrt{8+\sqrt{55}} \quad | \quad \sqrt{ x^2 } \\ \\ = \sqrt{ \left( \sqrt{8-\sqrt{55}}+\sqrt{8+\sqrt{55}} \right)^2 } \\ \\ = \sqrt{ (8-\sqrt{55}) +(8+ \sqrt{55}) +2*\left( \sqrt{8-\sqrt{55}} \right)* \left(\sqrt{8+\sqrt{55}} \right)} \\ \\ = \sqrt{ 16+2*\left( \sqrt{8-\sqrt{55}} \right) * \left(\sqrt{8+\sqrt{55}} \right) } \\ \\ = \sqrt{ 16+2* \sqrt{8^2- 55 } }\\ \\ = \sqrt{ 16+2* \sqrt{64-55} } \\ \\ = \sqrt{ 16+2* \sqrt{9} } \\ \\ = \sqrt{ 16+2* 3 }\\ \\ = \sqrt{ 22 }\\ \\ = 4.69041576$$

.
Jan 25, 2015

#1
+94976
+10

$$\sqrt{8-\sqrt{55}}+\sqrt{8+\sqrt{55}}$$

This is a tough one!

First I am going to consider      $$8-\sqrt{55}$$

I want to express this as a perfect square.

$$\\8-\sqrt{55}\\\\ =\frac{5}{2}-\sqrt{55}+\frac{11}{2}\\\\ =\frac{25}{10}-\frac{10\sqrt{55}}{10}+\frac{55}{10}\\\\ =\frac{25-10\sqrt{55}+55}{10}\\\\ =\frac{5^2-10\sqrt{55}+(\sqrt{55})^2}{10}\\\\ =\frac{(5-\sqrt{55})^2}{10}\\\\ But\;\; (5-\sqrt{55})^2=(\sqrt{55}-5)^2\;\;and I want the positive one, so \\\\ =\frac{(\sqrt{55}-5)^2}{10}\\\\$$

$$\\Hence\\\\ \sqrt{8-\sqrt{55}}\\\\ =\sqrt{\frac{(\sqrt{55}-5)^2}{10}}\\\\ =\frac{\sqrt{55}-5}{\sqrt{10}}}\\\\ =\frac{\sqrt{10*55}-5\sqrt{10}}{10}\\\\ =\frac{\sqrt{2*5*5*11}-5\sqrt{10}}{10}\\\\ =\frac{5\sqrt{22}-5\sqrt{10}}{10}\\\\ =\frac{\sqrt{22}-\sqrt{10}}{2}\\\\$$

NOW, BY THE SAME LOGIC,

$$\\Hence\\\\ \sqrt{8}+\sqrt{55}=\frac{\sqrt{22}+\sqrt{10}}{2}\\\\ SO\\\\ \sqrt{8-\sqrt{55}}+\sqrt{8+\sqrt{55}}\\\\ =\frac{\sqrt{22}-\sqrt{10}}{2}+\frac{\sqrt{22}+\sqrt{10}}{2}\\\\ =\frac{2\sqrt{22}}{2}\\\\ =\sqrt{22}\\\\$$

.
Jan 25, 2015
#2
+94235
0

Very crafty, Melody....!!!

Jan 25, 2015
#3
+20805
+10

sqrt(8-sqrt(55))+sqrt(8+sqrt(55))

$$\sqrt{8-\sqrt{55}}+\sqrt{8+\sqrt{55}} \quad | \quad \sqrt{ x^2 } \\ \\ = \sqrt{ \left( \sqrt{8-\sqrt{55}}+\sqrt{8+\sqrt{55}} \right)^2 } \\ \\ = \sqrt{ (8-\sqrt{55}) +(8+ \sqrt{55}) +2*\left( \sqrt{8-\sqrt{55}} \right)* \left(\sqrt{8+\sqrt{55}} \right)} \\ \\ = \sqrt{ 16+2*\left( \sqrt{8-\sqrt{55}} \right) * \left(\sqrt{8+\sqrt{55}} \right) } \\ \\ = \sqrt{ 16+2* \sqrt{8^2- 55 } }\\ \\ = \sqrt{ 16+2* \sqrt{64-55} } \\ \\ = \sqrt{ 16+2* \sqrt{9} } \\ \\ = \sqrt{ 16+2* 3 }\\ \\ = \sqrt{ 22 }\\ \\ = 4.69041576$$

heureka Jan 25, 2015
#4
+94235
0

Also well done, heureka...!!!

Your method is a little more intuitive to me, than Melody's.....

But.......either one gets the job done!!!

Jan 25, 2015
#5
+94976
0

Thanks Chris,

Yes, I will admit, I like Heureka's method better too.

Jan 25, 2015