+0  
 
0
680
5
avatar

sqrt(8-sqrt(55))+sqrt(8+sqrt(55))

 Jan 25, 2015

Best Answer 

 #3
avatar+20805 
+10

sqrt(8-sqrt(55))+sqrt(8+sqrt(55))

$$\sqrt{8-\sqrt{55}}+\sqrt{8+\sqrt{55}} \quad | \quad \sqrt{ x^2 } \\ \\
= \sqrt{ \left( \sqrt{8-\sqrt{55}}+\sqrt{8+\sqrt{55}} \right)^2 } \\ \\
= \sqrt{ (8-\sqrt{55}) +(8+ \sqrt{55}) +2*\left( \sqrt{8-\sqrt{55}} \right)* \left(\sqrt{8+\sqrt{55}} \right)} \\ \\
= \sqrt{ 16+2*\left( \sqrt{8-\sqrt{55}} \right) * \left(\sqrt{8+\sqrt{55}} \right) } \\ \\
= \sqrt{ 16+2* \sqrt{8^2- 55 } }\\ \\
= \sqrt{ 16+2* \sqrt{64-55} } \\ \\
= \sqrt{ 16+2* \sqrt{9} } \\ \\
= \sqrt{ 16+2* 3 }\\ \\
= \sqrt{ 22 }\\ \\
= 4.69041576$$

.
 Jan 25, 2015
 #1
avatar+94976 
+10

$$\sqrt{8-\sqrt{55}}+\sqrt{8+\sqrt{55}}$$

 

This is a tough one!

First I am going to consider      $$8-\sqrt{55}$$

I want to express this as a perfect square.

$$\\8-\sqrt{55}\\\\
=\frac{5}{2}-\sqrt{55}+\frac{11}{2}\\\\
=\frac{25}{10}-\frac{10\sqrt{55}}{10}+\frac{55}{10}\\\\
=\frac{25-10\sqrt{55}+55}{10}\\\\
=\frac{5^2-10\sqrt{55}+(\sqrt{55})^2}{10}\\\\
=\frac{(5-\sqrt{55})^2}{10}\\\\
But\;\; (5-\sqrt{55})^2=(\sqrt{55}-5)^2\;\;$and I want the positive one, so $\\\\
=\frac{(\sqrt{55}-5)^2}{10}\\\\$$

 

$$\\Hence\\\\
\sqrt{8-\sqrt{55}}\\\\
=\sqrt{\frac{(\sqrt{55}-5)^2}{10}}\\\\
=\frac{\sqrt{55}-5}{\sqrt{10}}}\\\\
=\frac{\sqrt{10*55}-5\sqrt{10}}{10}\\\\
=\frac{\sqrt{2*5*5*11}-5\sqrt{10}}{10}\\\\
=\frac{5\sqrt{22}-5\sqrt{10}}{10}\\\\
=\frac{\sqrt{22}-\sqrt{10}}{2}\\\\$$

 

NOW, BY THE SAME LOGIC,

 

$$\\Hence\\\\
\sqrt{8}+\sqrt{55}=\frac{\sqrt{22}+\sqrt{10}}{2}\\\\
SO\\\\
\sqrt{8-\sqrt{55}}+\sqrt{8+\sqrt{55}}\\\\
=\frac{\sqrt{22}-\sqrt{10}}{2}+\frac{\sqrt{22}+\sqrt{10}}{2}\\\\
=\frac{2\sqrt{22}}{2}\\\\
=\sqrt{22}\\\\$$

.
 Jan 25, 2015
 #2
avatar+94235 
0

Very crafty, Melody....!!!

 

 Jan 25, 2015
 #3
avatar+20805 
+10
Best Answer

sqrt(8-sqrt(55))+sqrt(8+sqrt(55))

$$\sqrt{8-\sqrt{55}}+\sqrt{8+\sqrt{55}} \quad | \quad \sqrt{ x^2 } \\ \\
= \sqrt{ \left( \sqrt{8-\sqrt{55}}+\sqrt{8+\sqrt{55}} \right)^2 } \\ \\
= \sqrt{ (8-\sqrt{55}) +(8+ \sqrt{55}) +2*\left( \sqrt{8-\sqrt{55}} \right)* \left(\sqrt{8+\sqrt{55}} \right)} \\ \\
= \sqrt{ 16+2*\left( \sqrt{8-\sqrt{55}} \right) * \left(\sqrt{8+\sqrt{55}} \right) } \\ \\
= \sqrt{ 16+2* \sqrt{8^2- 55 } }\\ \\
= \sqrt{ 16+2* \sqrt{64-55} } \\ \\
= \sqrt{ 16+2* \sqrt{9} } \\ \\
= \sqrt{ 16+2* 3 }\\ \\
= \sqrt{ 22 }\\ \\
= 4.69041576$$

heureka Jan 25, 2015
 #4
avatar+94235 
0

Also well done, heureka...!!!

Your method is a little more intuitive to me, than Melody's.....

But.......either one gets the job done!!!

 Jan 25, 2015
 #5
avatar+94976 
0

Thanks Chris,  

Yes, I will admit, I like Heureka's method better too.   

 Jan 25, 2015

35 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.