The first square in a sequence of squares is in ABCD position. (We read the vertices by starting with the lower-left vertex, and going clockwise.)

Then, after rotating it 90 degrees clockwise, it is in DABC position.
Image and video hosting by TinyPic
Next, it is reflected over a central vertical line, ending in CBAD position.
Image and video hosting by TinyPic

If the pattern of alternately rotating and reflecting continues, what position will the 2007th square be in? Give your answer with lower left vertex first and the other vertices in clockwise order.

Image and video hosting by TinyPic

waffles  Oct 22, 2017

1+0 Answers




B           C              A            B            B         A           C        B          B       C

       1            →            2            →          3          →         4        →        1

A           D              D            C           C         D           D        A          A       D


Note that  every 4  "transformations"  gets us back to the original orientation




Dividing  2007 by 4...

We get a remainder of  3/4  which results in the 3rd orientation in the pattern, i.e.,




cool cool cool

CPhill  Oct 22, 2017

29 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy