For exponential/parabolic functions, how are these forms related? How can I change one into another?
Standard Form: y = ax2 + bx + c
Vertex/Graphing Form: y = a(x-h)2 + k
Thank you!
y = ax^2 + bx + c complete the square
y - c = ax^2 + bx
y - c = a(x^2 + (b/a)x )
y - c + a(b^2/[ 4a^2]) = a(x^2 + (b/a)x + (b^2/[4a^2] )
y - c + a(b^2 / [ 4a^2]) = a( x + [b/(2a)] ) ^2
y - c + a(b^2 / [ 4a^2]) = a( x - [ -b/(2a) ] ) ^2
y = a( x - [ -b/(2a) ] ) ^2 - a(b^2 /[ 4a^2]) + c
y= a(x - [ -b/(2a)])^2 - b^2/(4a) + c (1)
Remember that [-b/(2a)] is the x coordinate of the vertex = h
And substituting this into y =ax^2 + bx + c .....we can find the y coordinate of the vertex = k, thusly :
y = a[-b/(2a)]^2 + b[-b/(2a)] + c = k
y = b^2/ [4a] - [2b^2/ (4a)] + c = k
y = - b^2/ (4a) + c = k
And substituting -b/(2a) = h and -b^2/(4a) + c = k into (1), we have
y = a (x - h)^2 + k
y = ax^2 + bx + c complete the square
y - c = ax^2 + bx
y - c = a(x^2 + (b/a)x )
y - c + a(b^2/[ 4a^2]) = a(x^2 + (b/a)x + (b^2/[4a^2] )
y - c + a(b^2 / [ 4a^2]) = a( x + [b/(2a)] ) ^2
y - c + a(b^2 / [ 4a^2]) = a( x - [ -b/(2a) ] ) ^2
y = a( x - [ -b/(2a) ] ) ^2 - a(b^2 /[ 4a^2]) + c
y= a(x - [ -b/(2a)])^2 - b^2/(4a) + c (1)
Remember that [-b/(2a)] is the x coordinate of the vertex = h
And substituting this into y =ax^2 + bx + c .....we can find the y coordinate of the vertex = k, thusly :
y = a[-b/(2a)]^2 + b[-b/(2a)] + c = k
y = b^2/ [4a] - [2b^2/ (4a)] + c = k
y = - b^2/ (4a) + c = k
And substituting -b/(2a) = h and -b^2/(4a) + c = k into (1), we have
y = a (x - h)^2 + k