We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
179
1
avatar

How many ways are there up an 11 step staircase if you can go one or two steps at a time?

 Jul 10, 2018

Best Answer 

 #1
avatar+22343 
+1

How many ways are there up an 11 step staircase if you can go one or two steps at a time?

 

Let \(F_n\) be the number of ways to climb n stairs taking only 1 or 2 steps.

 

1. Solution:

\(\small{ \begin{array}{|rcll|} \hline F_n &=& ^{n}C_0 +\ ^{(n-1)}C_1+\ ^{(n-2)}C_2+\ ^{(n-3)}C_3+\ ^{(n-4)}C_4+\ ^{(n-5)}C_5 + \ldots +\ ^{(n-k)}C_k\,\quad (n-k) \ge k \\\\ && \text{case of n=11 steps}: \\\\ F_{11} &=& ^{11}C_0 +\ ^{10}C_1+\ ^{9}C_2+\ ^{8}C_3+\ ^{7}C_4+\ ^{6}C_5 \\ &=& 1 +10+36+56+35+6 \\ &=& 144 \\ \hline \end{array} } \)

 

2. Solution:

\(\begin{array}{|rcll|} \hline F_n &=& \mathcal{F}_{n+1} \qquad \mathcal{F} \text{ is the Fibonacci number }\\\\ && \text{case of n=11 steps}: \\\\ F_{11} &=& \mathcal{F}_{12} \qquad \\ && \mathcal{F}_0 = 0 \\ && \mathcal{F}_1 = 1\\ && \mathcal{F}_2 = 1\\ && \mathcal{F}_3 = 2\\ && \mathcal{F}_4 = 3\\ && \mathcal{F}_5 = 4\\ && \mathcal{F}_6 = 5\\ && \mathcal{F}_7 = 13\\ && \mathcal{F}_8 = 21\\ && \mathcal{F}_9 = 34\\ && \mathcal{F}_{10} = 55\\ && \mathcal{F}_{11} = 89\\ && \mathcal{F}_{12} = 144\\ && \ldots \\ F_{11} &=& 144 \\ \hline \end{array}\)

 

laugh

 Jul 11, 2018
 #1
avatar+22343 
+1
Best Answer

How many ways are there up an 11 step staircase if you can go one or two steps at a time?

 

Let \(F_n\) be the number of ways to climb n stairs taking only 1 or 2 steps.

 

1. Solution:

\(\small{ \begin{array}{|rcll|} \hline F_n &=& ^{n}C_0 +\ ^{(n-1)}C_1+\ ^{(n-2)}C_2+\ ^{(n-3)}C_3+\ ^{(n-4)}C_4+\ ^{(n-5)}C_5 + \ldots +\ ^{(n-k)}C_k\,\quad (n-k) \ge k \\\\ && \text{case of n=11 steps}: \\\\ F_{11} &=& ^{11}C_0 +\ ^{10}C_1+\ ^{9}C_2+\ ^{8}C_3+\ ^{7}C_4+\ ^{6}C_5 \\ &=& 1 +10+36+56+35+6 \\ &=& 144 \\ \hline \end{array} } \)

 

2. Solution:

\(\begin{array}{|rcll|} \hline F_n &=& \mathcal{F}_{n+1} \qquad \mathcal{F} \text{ is the Fibonacci number }\\\\ && \text{case of n=11 steps}: \\\\ F_{11} &=& \mathcal{F}_{12} \qquad \\ && \mathcal{F}_0 = 0 \\ && \mathcal{F}_1 = 1\\ && \mathcal{F}_2 = 1\\ && \mathcal{F}_3 = 2\\ && \mathcal{F}_4 = 3\\ && \mathcal{F}_5 = 4\\ && \mathcal{F}_6 = 5\\ && \mathcal{F}_7 = 13\\ && \mathcal{F}_8 = 21\\ && \mathcal{F}_9 = 34\\ && \mathcal{F}_{10} = 55\\ && \mathcal{F}_{11} = 89\\ && \mathcal{F}_{12} = 144\\ && \ldots \\ F_{11} &=& 144 \\ \hline \end{array}\)

 

laugh

heureka Jul 11, 2018

14 Online Users

avatar
avatar