+0  
 
+1
85
6
avatar+2077 

Still stuck on #20

20. Don't know what to do after this: [(16a^4/12a^3)]-[(40a^2/12a^3)]+[(24a/12a^3)]

RainbowPanda  Sep 11, 2018
edited by RainbowPanda  Sep 11, 2018
 #1
avatar+2077 
+3

Nvm I got 18 but still need help with 20

RainbowPanda  Sep 11, 2018
 #2
avatar+3277 
+3

18. \(4(2-3w)(w^2-2w+10)\), we take a good look at the last two terms, excluding the 4: (2-3w) and (w^2-2w+10)

We can expand or distribute the first two terms(2 and -3w) with the rest of the terms. So, we yield: \(2w^2+2\left(-2w\right)+2\cdot \:10+\left(-3w\right)w^2+\left(-3w\right)\left(-2w\right)+\left(-3w\right)\cdot \:10\) . We simplify this, to get: \(-3w^3+8w^2-34w+20\).

 

Now, finally, we multiply this terms by 4: \(\:4\left(-3w^3+8w^2-34w+20\right)= \boxed{-12w^3+32w^2-136w+80}\), and that's our answer!

 

I have to go now, bye!

Oops, didn't see your reply, sorry.

 

smileysmiley

tertre  Sep 11, 2018
edited by tertre  Sep 11, 2018
 #3
avatar+2077 
+2

Oh darn >.< I just needed 20. It's alright 

RainbowPanda  Sep 11, 2018
 #4
avatar+3277 
+3

Wait, I can try 20!

20. \(\frac{16a^4-40a^2+24a}{12a^3}\), we can factor out a common term 8a from the numerator, so we get: \(8a\left(2a^3-5a+3\right)\).

Now, we are left with \(\frac{8a\left(2a^3-5a+3\right)}{12a^3}\) . We can factor a common term 4, and cancel \(a\) , a common factor. 

Cancel common factor 4: \(\frac{2a\left(2a^3-5a+3\right)}{3a^3}\).

Cancel common factor \(a\)\(\frac{2\left(2a^3-5a+3\right)}{3a^2}\).

 

So, \(\boxed{\frac{2\left(2a^3-5a+3\right)}{3a^2}} \)

is our answer!

smileysmiley

tertre  Sep 11, 2018
 #5
avatar+3277 
+3

Notice: In the cancellation of a common factor a, we canceled 2a and 3a^3, yielding us with: 2 and 3a^2.

smileysmiley

tertre  Sep 11, 2018
 #6
avatar+2077 
+1

Thank you so much! ^-^ have an amazing day!

RainbowPanda  Sep 11, 2018

7 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.