Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
3159
1
avatar+64 

Let triangle ABC be a triangle such that AB=13, BC=14, and AC=15. Meanwhile, D is a point on BC such that AD bisects angle A. Find the area of triangle ADC

 Jul 26, 2017
 #1
avatar+26397 
+3

Let triangle ABC be a triangle such that AB=13, BC=14, and AC=15. 

Meanwhile, D is a point on BC such that AD bisects angle A.

Find the area of triangle ADC

 

Let area of triangle ADC=AADC

Let area of triangle ADB=AADB
Let area of triangle ABC=A

 

Let AADB=AAADC

 

AADBAADC=¯AD13sin(A2)12¯AD15sin(A2)12AADBAADC=1315|AADB=AAADCAAADCAADC=1315AAADC1=1315AAADC=1+1315AAADC=2815AADCA=1528AADC =1528A

 

Heron's formula states that the area of a triangle whose sides have lengths a, b, and c is

A=s(sa)(sb)(sc)

 

where s is the semiperimeter of the triangle; that is,
s=a+b+c2.

 

s=a+b+c2|a=14, b=15, c=13s=15+15+132s=422s=21

 

A=s(sa)(sb)(sc)|s=21, a=14, b=15, c=13A=21(2114)(2115)(2113)A=21768A=3772324A=427232A=473A=84

 

AADC =1528A|A=84AADC =152884AADC =153AADC =45

 

laugh

 Jul 27, 2017

1 Online Users