Let triangle ABC be a triangle such that AB=13, BC=14, and AC=15. Meanwhile, D is a point on BC such that AD bisects angle A. Find the area of triangle ADC
Let triangle ABC be a triangle such that AB=13, BC=14, and AC=15.
Meanwhile, D is a point on BC such that AD bisects angle A.
Find the area of triangle ADC
Let area of triangle ADC=AADC
Let area of triangle ADB=AADB
Let area of triangle ABC=A
Let AADB=A−AADC
AADBAADC=¯AD⋅13⋅sin(A2)⋅12¯AD⋅15⋅sin(A2)⋅12AADBAADC=1315|AADB=A−AADCA−AADCAADC=1315AAADC−1=1315AAADC=1+1315AAADC=2815AADCA=1528AADC =1528A
Heron's formula states that the area of a triangle whose sides have lengths a, b, and c is
A=√s(s−a)(s−b)(s−c)
where s is the semiperimeter of the triangle; that is,
s=a+b+c2.
s=a+b+c2|a=14, b=15, c=13s=15+15+132s=422s=21
A=√s(s−a)(s−b)(s−c)|s=21, a=14, b=15, c=13A=√21(21−14)(21−15)(21−13)A=√21⋅7⋅6⋅8A=√3⋅7⋅7⋅2⋅3⋅2⋅4A=√42⋅72⋅32A=4⋅7⋅3A=84
AADC =1528A|A=84AADC =1528⋅84AADC =15⋅3AADC =45