+0  
 
+1
26
1
avatar+938 

 

Okay so: I did the cross product and I got: 

(-7, 2k,4k+3) I thought of writing as i, j, and k but that didn't sound right so instead I put that in the formula, and from there I'm stuck.

 

\(A = \sqrt{(-7)^2+(2k)^2+(4k+3)^2} \)

I also thought of plugging in √(41) into A, but I'm not completely sure. Any help?

Julius  May 15, 2018
Sort: 

1+0 Answers

 #1
avatar+86613 
+2

Let's see....I'm going to use  "n"  instead of "k" to prevent confusion

 

Cross product

 

       i             j         k           i          j

   n + 1         1         -2      n + 1      1

     n             3          0         n         3

 

[ 0i  +  (-2n) j  + (3n + 3) k ] -  [ n k  - 6i  + 0j ] =

 

6i  + ( - 2n)  j + (2n + 3)k  

 

So.....we have  ( 6 , -2n , 3 + 2n )

 

So...we wnat to solve this

 

√ [ 6^2  + (-2n)^2  + (3 + 2n)^2  ]  = √41       square both sides

 

6^2  + (-2n)^2 + (3 + 2n)^2  = 41     simplify

 

36  + 4n^2  +  4n^2 + 12n + 9  = 41

 

8n^2  + 12n  + 45  = 41

 

8n^2 + 12n + 4  = 0

 

2n^2 + 3n + 1  = 0

 

(2n + 1) ( n + 1)  =  0

 

Setting  each  factor to 0   and  solving for  n we get that  n  = -1/2  or  n  = -1

 

So...converting back to k....then  k = -1/2  or k  = -1

 

 

 

cool cool cool

 
CPhill  May 15, 2018

4 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy