We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
127
3
avatar+453 

Hi good people,

 

I have tried this sum 3 times and got 3 different answers, please help me with this one:

 

\({{54^n}-18^{n-1}.3^{n+1}} \over{(3^{n-1})}^2.6^n\)

Thank you all very very much, I honestly do appreciate your time...

 Mar 5, 2019
 #1
avatar+22516 
+4

I have tried this sum 3 times and got 3 different answers, please help me with this one:

 

\(\mathbf{\large{ \dfrac{ 54^n-18^{n-1}\cdot 3^{n+1} } { {(3^{n-1})}^2\cdot 6^n } }}\)

 

\(\begin{array}{|rcll|} \hline &&\mathbf{ \dfrac{ 54^n-18^{n-1}\cdot 3^{n+1} } { {(3^{n-1})}^2\cdot 6^n } } \\\\ &=& \dfrac{ 54^n-18^n\cdot 18^{-1}\cdot 3^n\cdot 3^1 } { { 3^{(n-1)\cdot 2} } \cdot 6^n } \\\\ &=& \dfrac{ 54^n-18^n\cdot 3^n\cdot \frac{3}{18}} { {3^{2n-2}}\cdot 6^n } \\\\ &=& \dfrac{ 54^n-(18\cdot 3)^n\cdot \frac{1}{6} } { {3^{2n}\cdot 3^{-2} }\cdot 6^n } \\\\ &=& \dfrac{ 54^n-54^n\cdot \frac{1}{6} } { \left(3^2\right)^n\cdot \frac{1}{9} \cdot 6^n } \\\\ &=& \dfrac{ 54^n \cdot \left(1- \frac{1}{6}\right) } { 9^n\cdot 6^n \cdot \frac{1}{9} } \\\\ &=& \dfrac{ 54^n \cdot \frac{5}{6} } { \left(6\cdot 9\right)^n \cdot \frac{1}{9} } \\\\ &=& \dfrac{ 54^n \cdot \frac{5}{6} } { 54^n \cdot \frac{1}{9} } \\\\ &=& \dfrac{ \frac{5}{6} } { \frac{1}{9} } \\\\ &=& \dfrac{5}{6} \cdot \dfrac{9}{1} \\\\ &=& \dfrac{5\cdot 3}{2} \\\\ &\mathbf{=}& \mathbf{\dfrac{15}{2}} \\ \hline \end{array}\)

 

laugh

 Mar 5, 2019
 #2
avatar+453 
+2

Heureka,

 

life saver, I did not come close to this in 3 attempts!!..have a very very blessed day!!!..thank you...

juriemagic  Mar 5, 2019
 #3
avatar+22516 
+3

Thank you, JM

 

laughlaughlaugh

heureka  Mar 5, 2019

12 Online Users

avatar