Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
920
3
avatar+270 

So, not entire sure how to go about doing this one using the substitution method, so i'd appreciate any help :\

 

e31dxx(1+lnx)

 Apr 21, 2016

Best Answer 

 #3
avatar+33658 
+5

I would do it like this:

 

substitution

.

 Apr 21, 2016
 #1
avatar
0

Compute the definite integral:
 integral_1^(e^3) x (log(x)+1) dx
Expanding the integrand x (log(x)+1) gives x+x log(x):
  =   integral_1^(e^3) (x+x log(x)) dx
Integrate the sum term by term:
  =   integral_1^(e^3) x log(x) dx+ integral_1^(e^3) x dx
For the integrand x log(x), integrate by parts,  integral f dg = f g- integral g df, where
 f = log(x),     dg = x  dx,
 df = 1/x  dx,     g = x^2/2:
  =  1/2 x^2 log(x)|_1^(e^3)+1/2 integral_1^(e^3) x dx
Evaluate the antiderivative at the limits and subtract.
 1/2 x^2 log(x)|_1^(e^3) = 1/2 (e^3)^2 log(e^3)-1/2 1^2 log(1) = (3 e^6)/2:
  =  (3 e^6)/2+1/2 integral_1^(e^3) x dx
Apply the fundamental theorem of calculus.
The antiderivative of x is x^2/2:
  =  (3 e^6)/2+x^2/4|_1^(e^3)
Evaluate the antiderivative at the limits and subtract.
 x^2/4|_1^(e^3) = (e^3)^2/4-1^2/4 = 1/4 (e^6-1):
  =  (3 e^6)/2+1/4 (e^6-1)
Which is equal to:
Answer: |   =  1/4 (7 e^6-1)

 Apr 21, 2016
 #2
avatar+26397 
+5

So, not entire sure how to go about doing this one using the substitution method, so i'd appreciate any help :\

 

e31dxx[1+ln(x)]

 

e31dxx[1+ln(x)]substitute  z=1+ln(x)dz=dxxdx=xdze31dxx[1+ln(x)]=e31xdzxz=e31dzz=[ ln(z) ]e31=[ ln( 1+ln(x) ) ]e31=ln( 1+ln(e3) )ln( 1+ln(1) )|ln(1)=0=ln( 1+ln(e3) )ln(1+0)=ln( 1+ln(e3) )ln(1)|ln(1)=0=ln( 1+ln(e3) )0=ln( 1+ln(e3) )=ln( 1+ln(e3) )|ln(e3)=3=ln(1+3)e31dxx[1+ln(x)]=ln(4)e31dxx[1+ln(x)]=1.38629436112

 

laugh

 Apr 21, 2016
 #3
avatar+33658 
+5
Best Answer

I would do it like this:

 

substitution

.

Alan Apr 21, 2016

0 Online Users