So, not entire sure how to go about doing this one using the substitution method, so i'd appreciate any help :\
∫e31dxx(1+lnx)
Compute the definite integral:
integral_1^(e^3) x (log(x)+1) dx
Expanding the integrand x (log(x)+1) gives x+x log(x):
= integral_1^(e^3) (x+x log(x)) dx
Integrate the sum term by term:
= integral_1^(e^3) x log(x) dx+ integral_1^(e^3) x dx
For the integrand x log(x), integrate by parts, integral f dg = f g- integral g df, where
f = log(x), dg = x dx,
df = 1/x dx, g = x^2/2:
= 1/2 x^2 log(x)|_1^(e^3)+1/2 integral_1^(e^3) x dx
Evaluate the antiderivative at the limits and subtract.
1/2 x^2 log(x)|_1^(e^3) = 1/2 (e^3)^2 log(e^3)-1/2 1^2 log(1) = (3 e^6)/2:
= (3 e^6)/2+1/2 integral_1^(e^3) x dx
Apply the fundamental theorem of calculus.
The antiderivative of x is x^2/2:
= (3 e^6)/2+x^2/4|_1^(e^3)
Evaluate the antiderivative at the limits and subtract.
x^2/4|_1^(e^3) = (e^3)^2/4-1^2/4 = 1/4 (e^6-1):
= (3 e^6)/2+1/4 (e^6-1)
Which is equal to:
Answer: | = 1/4 (7 e^6-1)
So, not entire sure how to go about doing this one using the substitution method, so i'd appreciate any help :\
∫e31dxx⋅[1+ln(x)]
∫e31dxx⋅[1+ln(x)]substitute z=1+ln(x)dz=dxxdx=x⋅dz∫e31dxx⋅[1+ln(x)]=∫e31x⋅dzx⋅z=∫e31dzz=[ ln(z) ]e31=[ ln( 1+ln(x) ) ]e31=ln( 1+ln(e3) )−ln( 1+ln(1) )|ln(1)=0=ln( 1+ln(e3) )−ln(1+0)=ln( 1+ln(e3) )−ln(1)|ln(1)=0=ln( 1+ln(e3) )−0=ln( 1+ln(e3) )=ln( 1+ln(e3) )|ln(e3)=3=ln(1+3)∫e31dxx⋅[1+ln(x)]=ln(4)∫e31dxx⋅[1+ln(x)]=1.38629436112