+0  
 
0
3414
8
avatar

Sue owns 11 pairs of shoes: six identical black pairs, three identical brown pairs and two identical gray pairs. If she picks two shoes at random, what is the probability that they are the same color and that one is a left shoe and the other is a right shoe? Express your answer as a common fraction.

 Apr 8, 2015

Best Answer 

 #1
avatar+118677 
+7

22 shoes

12 black,  6 brown,  4 grey   (Aussie spelling)

P(Bl,Bl)   =     $$\left({\frac{{\mathtt{12}}}{{\mathtt{22}}}}{\mathtt{\,\times\,}}{\frac{{\mathtt{11}}}{{\mathtt{21}}}}\right)$$   

 

P(Br,Br) =     $$\left({\frac{{\mathtt{6}}}{{\mathtt{22}}}}{\mathtt{\,\times\,}}{\frac{{\mathtt{5}}}{{\mathtt{21}}}}\right)$$

 

P(G,G) =   $$\left({\frac{{\mathtt{4}}}{{\mathtt{22}}}}{\mathtt{\,\times\,}}{\frac{{\mathtt{3}}}{{\mathtt{21}}}}\right)$$

 

P(same colour)  =    $$\left({\frac{{\mathtt{12}}}{{\mathtt{22}}}}{\mathtt{\,\times\,}}{\frac{{\mathtt{11}}}{{\mathtt{21}}}}\right){\mathtt{\,\small\textbf+\,}}\left({\frac{{\mathtt{6}}}{{\mathtt{22}}}}{\mathtt{\,\times\,}}{\frac{{\mathtt{5}}}{{\mathtt{21}}}}\right){\mathtt{\,\small\textbf+\,}}\left({\frac{{\mathtt{4}}}{{\mathtt{22}}}}{\mathtt{\,\times\,}}{\frac{{\mathtt{3}}}{{\mathtt{21}}}}\right) = {\frac{{\mathtt{29}}}{{\mathtt{77}}}} = {\mathtt{0.376\: \!623\: \!376\: \!623\: \!376\: \!6}}$$

 

P(same colour)  =      $${\frac{{\mathtt{29}}}{{\mathtt{77}}}}$$

 Apr 9, 2015
 #1
avatar+118677 
+7
Best Answer

22 shoes

12 black,  6 brown,  4 grey   (Aussie spelling)

P(Bl,Bl)   =     $$\left({\frac{{\mathtt{12}}}{{\mathtt{22}}}}{\mathtt{\,\times\,}}{\frac{{\mathtt{11}}}{{\mathtt{21}}}}\right)$$   

 

P(Br,Br) =     $$\left({\frac{{\mathtt{6}}}{{\mathtt{22}}}}{\mathtt{\,\times\,}}{\frac{{\mathtt{5}}}{{\mathtt{21}}}}\right)$$

 

P(G,G) =   $$\left({\frac{{\mathtt{4}}}{{\mathtt{22}}}}{\mathtt{\,\times\,}}{\frac{{\mathtt{3}}}{{\mathtt{21}}}}\right)$$

 

P(same colour)  =    $$\left({\frac{{\mathtt{12}}}{{\mathtt{22}}}}{\mathtt{\,\times\,}}{\frac{{\mathtt{11}}}{{\mathtt{21}}}}\right){\mathtt{\,\small\textbf+\,}}\left({\frac{{\mathtt{6}}}{{\mathtt{22}}}}{\mathtt{\,\times\,}}{\frac{{\mathtt{5}}}{{\mathtt{21}}}}\right){\mathtt{\,\small\textbf+\,}}\left({\frac{{\mathtt{4}}}{{\mathtt{22}}}}{\mathtt{\,\times\,}}{\frac{{\mathtt{3}}}{{\mathtt{21}}}}\right) = {\frac{{\mathtt{29}}}{{\mathtt{77}}}} = {\mathtt{0.376\: \!623\: \!376\: \!623\: \!376\: \!6}}$$

 

P(same colour)  =      $${\frac{{\mathtt{29}}}{{\mathtt{77}}}}$$

Melody Apr 9, 2015
 #2
avatar+356 
+5

That is incorrect(I think)

 

The correct answer is 7/33

 Dec 29, 2016
 #5
avatar+33661 
+5

If people are to learn from this site NinjaAnswer they would generally appreciate an explanation of how the answer is obtained!

.

Alan  Dec 29, 2016
 #6
avatar+356 
+5

Sorry Alan. I will post another solutionsad.

NinjaAnswer  Dec 31, 2016
 #3
avatar+33661 
+5

p(black pair) = (12/22)*(6/21) → 72/462

 

p(brown pair) = (6/22)*(3/21) → 18/462

 

p(grey pair) = (4/22)*(2/21) → 8/462

 

p(matching pair) = (72 + 18 + 8)/462 → 98/462 → 7/33

 

.

 Dec 29, 2016
 #4
avatar+33661 
+5

Note that after choosing one of the 12 black shoes, say, there are only 6 black shoes of the opposite parity left.

Alan  Dec 29, 2016
 #7
avatar+356 
+5

Sorry Alansad

 

Here is another approach:

 

We will consider these by the cases of what our first shoe selection is 12/22 . If our first shoe is black, which happens with probability 6/21 , then our second shoe will be black and for the opposite foot with probability (6/22)(3/21) . Likewise, for brown shoes, our probability is the product (4/22)(2/21) . And for gray, . So the sum is equal to:

 

(12 * 6 + 6 * 3 + 4 * 2)/(22 * 21)

 

98 / (33 * 14)

 

7/33

 Dec 31, 2016
 #8
avatar+356 
+5

oops. Alans was the same....

NinjaAnswer  Dec 31, 2016

2 Online Users

avatar