We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
243
4
avatar+322 

Find the exact value of the trigonometric function given that sin u = 12/13 and cos v = -4/5

(Both sin u and cos v are in Quadrant 2)

 

cos(u - v)

 Nov 16, 2018
edited by Ruublrr  Nov 16, 2018
 #1
avatar+5172 
+2

xxxx

.
 Nov 16, 2018
edited by Rom  Nov 16, 2018
 #2
avatar+575 
+2

cos(u-v)=cos(u)cos(v)+sin(u)sin(v)

given sin(u)=12/13 , cos(v)=-4/5

The given inforamtion is not enough to find the unique answer.

 

Assume cos(u)=5/13,sin(v)=3/5

cos(u-v)=-4/5*5/13+3/5*12/13=16/65

 

Assume cos(u)=5/13,sin(v)=-3/5

cos(u-v)=-4/5*5/13+(-3)/5*12/13=-56/65

 

assmue cos(u)=-5/13,sin(v)=3/5

cos(u-v)=-4/5*(-5)/13+12/13*3/5=56/65

 

assume cos(u)=-5/13, sin(v)=-3/5

cos(u-v)=-4/5*(-5)/13+12/13*(-3)/5=-16/65

 

You can find more information in the following link, for this topic read chapter 16

https://faculty.atu.edu/mfinan/trigbook.pdf

 Nov 16, 2018
 #4
avatar+101399 
+1

Thanks, fiora   !!!

 

 

cool cool cool

CPhill  Nov 16, 2018
 #3
avatar+101399 
+2

Not enough info to answer this

 

We need to know in what quadrants u and v lie.....

 

Reason??

 

sin u  = 12/13

But cos u  might be 5/13  or - 5/13

 

cos v = -4/5

But sin v might be 3/5  or - 3/5

 

 

cool cool cool

 Nov 16, 2018

14 Online Users