+0  
 
+1
432
4
avatar+322 

Find the exact value of the trigonometric function given that sin u = 12/13 and cos v = -4/5

(Both sin u and cos v are in Quadrant 2)

 

cos(u - v)

 Nov 16, 2018
edited by Ruublrr  Nov 16, 2018
 #1
avatar+6099 
+2

xxxx

.
 Nov 16, 2018
edited by Rom  Nov 16, 2018
 #2
avatar+575 
+2

cos(u-v)=cos(u)cos(v)+sin(u)sin(v)

given sin(u)=12/13 , cos(v)=-4/5

The given inforamtion is not enough to find the unique answer.

 

Assume cos(u)=5/13,sin(v)=3/5

cos(u-v)=-4/5*5/13+3/5*12/13=16/65

 

Assume cos(u)=5/13,sin(v)=-3/5

cos(u-v)=-4/5*5/13+(-3)/5*12/13=-56/65

 

assmue cos(u)=-5/13,sin(v)=3/5

cos(u-v)=-4/5*(-5)/13+12/13*3/5=56/65

 

assume cos(u)=-5/13, sin(v)=-3/5

cos(u-v)=-4/5*(-5)/13+12/13*(-3)/5=-16/65

 

You can find more information in the following link, for this topic read chapter 16

https://faculty.atu.edu/mfinan/trigbook.pdf

 Nov 16, 2018
 #4
avatar+107405 
+1

Thanks, fiora   !!!

 

 

cool cool cool

CPhill  Nov 16, 2018
 #3
avatar+107405 
+2

Not enough info to answer this

 

We need to know in what quadrants u and v lie.....

 

Reason??

 

sin u  = 12/13

But cos u  might be 5/13  or - 5/13

 

cos v = -4/5

But sin v might be 3/5  or - 3/5

 

 

cool cool cool

 Nov 16, 2018

28 Online Users

avatar
avatar