Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
107
2
avatar

The sum $1^2 + 2^2 + 3^2 + 4^2 + \cdots + n^2 = n(n+1)(2n+1) \div 6$. What is the value of $21^2 + 22^2 + \cdots + 40^2 + 41^2 + ... + 100^2$?

 Jun 3, 2023
 #1
avatar+4 
-1

The value of $21^2 + 22^2 + \cdots + 40^2 + 41^2 + \cdots + 100^2$ is 208450.

 Jun 3, 2023
 #2
avatar+33654 
+1

Let S(n)=n(n+1)(2n+1)6

 

Then you want  S(100)S(20)

 Jun 3, 2023

4 Online Users

avatar