Compute the sum
\frac{1}{\sqrt{36} + \sqrt{39}} + \frac{1}{\sqrt{42} +\sqrt{45}} + \frac{1}{\sqrt{45} + \sqrt{49}}
\(\frac{1}{\sqrt{36} + \sqrt{39}} + \frac{1}{\sqrt{42} +\sqrt{45}} + \frac{1}{\sqrt{45} + \sqrt{49}} \)
[ sqrt 36 - sqrt 39] / [ 36 -39 ] + [ sqrt 42 -sqrt 45 ] / [42 - 45] + [ sqrt 45 - sqrt 49] / [45 - 49 ] =
[ 6 - sqrt 39 ] / -3 + [ sqrt 42 - sqrt 45 ] / -3 + [ sqrt 45 - 7 ] / - 4 =
[ sqrt 39 - 6 ] / 3 + [ sqrt 45 - sqrt 42 ] / 3 + [7 - sqrt 45 ] / 4
[ 4 sqrt 39 - 24 + 4sqrt 45 - 4sqrt 42 + 21 - 3sqrt 45 ] / 12
[ -3 + sqrt 45 + 4sqrt 39 - 4sqrt 42 ] / 12 =
[ -3 + 3sqrt 5 + 4sqrt 39 - 4sqrt 42 ] / 12