We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+2
310
2
avatar+29 

 Suppose 5^{3x+2} = 675. Find 5^x

 Jun 7, 2018
 #1
avatar+18329 
+1

Take LOG of both sides to get:

(3x+2) LOG 5 = LOG 675    solve for x

3x+2 = log 675/log5

x=.682606194

5^.682606194 =~3

 Jun 7, 2018
 #2
avatar+101371 
+1

Thanks, EP....here's a slighly different approach...

 

5^(3x + 2)  = 675     and we can write

 

5^2 * 5^(3x)  = 675      simplify

 

25 * 5^(3x)  = 675      divide both sides  by 25

 

5^(3x)  = 27     and we can write

 

(5^x)^3  = 27     take the cube root of both sides

 

5^x  = 3

 

 

cool cool cool

 Jun 7, 2018

5 Online Users