+0  
 
0
467
3
avatar+644 

Suppose g(x)=4x^2+8x+13. Does g have an inverse? If so, find g^{-1}(25). If not, enter "undef".

 Oct 25, 2017
 #1
avatar+98196 
+2

Not a strict inverse, since it's not one-to-one

 

However.....it we restict the domain to [-1, inf )   we have

 

y = 4x^2 + 8x + 13

 

y - 13 + 4  =  4[ x^2 + 2x + 1]

 

y - 9  =  4 ( x + 1)^2

 

[ y - 9] / 4   =  (x + 1)^2

 

√ [ (y - 9) / 4 ]  =  x + 1

 

√ [ (y - 9) / 4 ]  - 1  = x     swap x and y    and for y write f-1 (x)

 

√ [ (x - 9) / 4 ]  - 1  = y  =  f-1 (x)

 

So  f-1 (25 )    =   √ [ (25 - 9) / 4 ]  - 1  =  √ [ 16 / 4 ]  - 1   = √4 - 1  = 2 - 1 =   1

 

 

cool cool cool

 Oct 25, 2017
 #2
avatar+644 
0

I think that's incorrect

waffles  Oct 25, 2017
 #3
avatar+98196 
+1

Then I suppose the domain is not allowed to be restricted.....so....there is no inverse in this case

 

 

cool cool cool

 Oct 25, 2017

3 Online Users

avatar