+0  
 
0
212
1
avatar

Suppose p+q+r = 7 and p^2+q^2+r^2 = 9. Then, what is the average (arithmetic mean) of the three products pqqr, and rp?

Guest Jan 31, 2015

Best Answer 

 #1
avatar+18829 
+10

Suppose p+q+r = 7 and p^2+q^2+r^2 = 9.

Then, what is the average (arithmetic mean) of the three products  pqqr, and rp   ?

$$\small{\text{
$
\begin{array}{rcl}
(p+q+r)^2&=&(p+q+r)(p+q+r)=p^2+q^2+r^2+2(pq+qr+rp)\\
(p+q+r)^2&=&p^2+q^2+r^2+2(pq+qr+rp)\\
7^2&=&9+2(pq+qr+rp)\\
2(pq+qr+rp)&=&7^2-9=49-9=40\\
(pq+qr+rp) &=& 20
\end{array}
$
}}$$

the average (arithmetic mean) of the three products  pqqr, and rp   ?   $$\frac{(pq+qr+rp) }{3} = \frac{20}{3}=6\frac{2}{3}$$

heureka  Feb 1, 2015
Sort: 

1+0 Answers

 #1
avatar+18829 
+10
Best Answer

Suppose p+q+r = 7 and p^2+q^2+r^2 = 9.

Then, what is the average (arithmetic mean) of the three products  pqqr, and rp   ?

$$\small{\text{
$
\begin{array}{rcl}
(p+q+r)^2&=&(p+q+r)(p+q+r)=p^2+q^2+r^2+2(pq+qr+rp)\\
(p+q+r)^2&=&p^2+q^2+r^2+2(pq+qr+rp)\\
7^2&=&9+2(pq+qr+rp)\\
2(pq+qr+rp)&=&7^2-9=49-9=40\\
(pq+qr+rp) &=& 20
\end{array}
$
}}$$

the average (arithmetic mean) of the three products  pqqr, and rp   ?   $$\frac{(pq+qr+rp) }{3} = \frac{20}{3}=6\frac{2}{3}$$

heureka  Feb 1, 2015

16 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details