Processing math: 100%
 
+0  
 
0
2279
2
avatar+389 

Suppose r and s are the values of c that satisfy the equation x^2-2mx+(m^2+2m+3)=0 for some real number m. Find the minimum real value of r^2+s^2.

 Aug 1, 2016
 #1
avatar
+6

Suppose r and s are the values of x that satisfy the equation x22mx+(m2+2m+3)=0 for some real number m. Find the minimum real value of r2+s2.

 

Use the quadratic formula:

 

ax2+bx+c=0x=12(b±b24ac)

(here, a=1, b=2m and c=m2+2m+3)

 

to find that

 

r=m+(2m+3)

 

and

 

s=m(2m+3).

 

Then r2+s2=2(m22m+3).

 

This is a concave-up parabola with vertex at m=1.

 

Now (r2+s2)|m=1=2(12+3)=4.

 Aug 1, 2016
 #2
avatar
-1
 Aug 1, 2016
edited by Guest  Aug 1, 2016

3 Online Users

avatar