+0  
 
0
202
2
avatar

Suppose that a,b, and c are positive integers satisfying (a+b+c)^3 - a^3 - b^3 - c^3 = 150. Find a+b+c.

 Jul 20, 2018

Best Answer 

 #1
avatar+21338 
+2

Suppose that a,b, and c are positive integers satisfying (a+b+c)^3 - a^3 - b^3 - c^3 = 150. 

Find a+b+c.

 

\(\small{ \begin{array}{|rcll|} \hline \boxed{(a+b+c)^3 - a^3 - b^3 - c^3 = 150} \\ \hline (a+b+c)^3 - a^3 - b^3 - c^3 &=& \Big( (a+b)+c \Big)^3 -a^3-b^3-c^3 \\ && \boxed{ ( (a+b)+c )^3 = (a+b)^3 + 3(a+b)^2c+3(a+b)c^2+c^3 \\= (a+b)^3+c^3+3c(a+b)(a+b+c) } \\ &=& (a+b)^3+c^3+3c(a+b)(a+b+c) -a^3-b^3-c^3 \\ && \boxed{ (a+b)^3 = a^3+3a^2b+3ab^2+b^3 \\ = a^3+b^3+3ab(a+b) } \\ &=& a^3+b^3+3ab(a+b)+c^3+3c(a+b)(a+b+c) -a^3-b^3-c^3 \\ &=& a^3+b^3+c^3+ 3ab(a+b)+3c(a+b)(a+b+c) -a^3-b^3-c^3 \\ &=& 3ab(a+b)+3c(a+b)(a+b+c) \\ &=& 3(a+b) \Big( ab+c(a+b+c) \Big) \\ &=& 3(a+b)(ab+ac+bc+c^2) \\ &=& 3(a+b)\Big( a(b+c)+c(b+c) \Big) \\ &=& 3(a+b)(b+c)(c+a) \\ \hline \boxed{3(a+b)(b+c)(c+a)=150} \\ \hline \end{array} } \)

 

\(\begin{array}{|lrcll|} \hline & 3(a+b)(b+c)(c+a) &=& 150 \quad & | \quad :3 \\ & (a+b)(b+c)(c+a)&=& 50 \quad & | \quad 50 = 2\cdot 5^2 \\ & (a+b)(b+c)(c+a)&=& 2\cdot 5^2 \\\\ (1)& 2\cdot 5 \cdot 5 &=& 2\cdot 5^2 \\ (2)& 5\cdot 2 \cdot 5 &=& 2\cdot 5^2 \\ (3)& 5\cdot 5 \cdot 2 &=& 2\cdot 5^2 \\\\ (1) & (a+b) &=& 2 \\ & (b+c) &=& 5 \\ & (c+a) &=& 5 \\ & (a+b) + (b+c) +(c+a) &=& 2 + 5 + 5 \\ & 2(a+b+c) &=& 12 \quad & | \quad :2 \\ & \mathbf{ (a+b+c) }& \mathbf{=} & \mathbf{ 6 } \\\\ (2) & (a+b) &=& 5 \\ & (b+c) &=& 2 \\ & (c+a) &=& 5 \\ & (a+b) + (b+c) +(c+a) &=& 5 + 2 + 5 \\ & 2(a+b+c) &=& 12 \quad & | \quad :2 \\ & \mathbf{ (a+b+c) }& \mathbf{=} & \mathbf{ 6 } \\\\ (3) & (a+b) &=& 5 \\ & (b+c) &=& 5 \\ & (c+a) &=& 2 \\ & (a+b) + (b+c) +(c+a) &=& 5 + 5 + 2 \\ & 2(a+b+c) &=& 12 \quad & | \quad :2 \\ & \mathbf{ (a+b+c) }& \mathbf{=} & \mathbf{ 6 } \\\\ \hline \Rightarrow &&& \{a=1, b=1, c=4\} \text{ or }\\ &&& \{a=4, b=1, c=1\} \text{ or } \\ &&& \{a=1, b=4, c=1\} \\ \hline \end{array}\)

 

laugh

 Jul 20, 2018
 #1
avatar+21338 
+2
Best Answer

Suppose that a,b, and c are positive integers satisfying (a+b+c)^3 - a^3 - b^3 - c^3 = 150. 

Find a+b+c.

 

\(\small{ \begin{array}{|rcll|} \hline \boxed{(a+b+c)^3 - a^3 - b^3 - c^3 = 150} \\ \hline (a+b+c)^3 - a^3 - b^3 - c^3 &=& \Big( (a+b)+c \Big)^3 -a^3-b^3-c^3 \\ && \boxed{ ( (a+b)+c )^3 = (a+b)^3 + 3(a+b)^2c+3(a+b)c^2+c^3 \\= (a+b)^3+c^3+3c(a+b)(a+b+c) } \\ &=& (a+b)^3+c^3+3c(a+b)(a+b+c) -a^3-b^3-c^3 \\ && \boxed{ (a+b)^3 = a^3+3a^2b+3ab^2+b^3 \\ = a^3+b^3+3ab(a+b) } \\ &=& a^3+b^3+3ab(a+b)+c^3+3c(a+b)(a+b+c) -a^3-b^3-c^3 \\ &=& a^3+b^3+c^3+ 3ab(a+b)+3c(a+b)(a+b+c) -a^3-b^3-c^3 \\ &=& 3ab(a+b)+3c(a+b)(a+b+c) \\ &=& 3(a+b) \Big( ab+c(a+b+c) \Big) \\ &=& 3(a+b)(ab+ac+bc+c^2) \\ &=& 3(a+b)\Big( a(b+c)+c(b+c) \Big) \\ &=& 3(a+b)(b+c)(c+a) \\ \hline \boxed{3(a+b)(b+c)(c+a)=150} \\ \hline \end{array} } \)

 

\(\begin{array}{|lrcll|} \hline & 3(a+b)(b+c)(c+a) &=& 150 \quad & | \quad :3 \\ & (a+b)(b+c)(c+a)&=& 50 \quad & | \quad 50 = 2\cdot 5^2 \\ & (a+b)(b+c)(c+a)&=& 2\cdot 5^2 \\\\ (1)& 2\cdot 5 \cdot 5 &=& 2\cdot 5^2 \\ (2)& 5\cdot 2 \cdot 5 &=& 2\cdot 5^2 \\ (3)& 5\cdot 5 \cdot 2 &=& 2\cdot 5^2 \\\\ (1) & (a+b) &=& 2 \\ & (b+c) &=& 5 \\ & (c+a) &=& 5 \\ & (a+b) + (b+c) +(c+a) &=& 2 + 5 + 5 \\ & 2(a+b+c) &=& 12 \quad & | \quad :2 \\ & \mathbf{ (a+b+c) }& \mathbf{=} & \mathbf{ 6 } \\\\ (2) & (a+b) &=& 5 \\ & (b+c) &=& 2 \\ & (c+a) &=& 5 \\ & (a+b) + (b+c) +(c+a) &=& 5 + 2 + 5 \\ & 2(a+b+c) &=& 12 \quad & | \quad :2 \\ & \mathbf{ (a+b+c) }& \mathbf{=} & \mathbf{ 6 } \\\\ (3) & (a+b) &=& 5 \\ & (b+c) &=& 5 \\ & (c+a) &=& 2 \\ & (a+b) + (b+c) +(c+a) &=& 5 + 5 + 2 \\ & 2(a+b+c) &=& 12 \quad & | \quad :2 \\ & \mathbf{ (a+b+c) }& \mathbf{=} & \mathbf{ 6 } \\\\ \hline \Rightarrow &&& \{a=1, b=1, c=4\} \text{ or }\\ &&& \{a=4, b=1, c=1\} \text{ or } \\ &&& \{a=1, b=4, c=1\} \\ \hline \end{array}\)

 

laugh

heureka Jul 20, 2018
 #2
avatar+96201 
0

Nice, heureka  !!!

 

 

cool cool cool

 Jul 20, 2018

7 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.