We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

Suppose that a, b, and c are real numbers for which \(\begin{align*}a^2b^2 &= 28, \\b^2c^2 &= 21, \text{ and}\\a^2c^2 &= 27,\end{align*}\)

and a

michaelcai Oct 12, 2017

#2**0 **

It doesnt show my edits for some reason. Here is the end of the question: and

EDIT: UHOQIJKPWHOJKMI IT WONT LET ME USE THE LESS THAN BUTTON

here is the end: and \(a

Find 3b.

EDIT: I HAVE TO WORD IT NOW AHHHGHHHHH ok, so a less than b is less than c. Find 3b.

michaelcai Oct 12, 2017

#3**0 **

Solved it: : Noticing that left-hand sides are symmetric in $a$, $b$, and $c$ (in that any relabelling of the variables in one of the left-hand sides gives one of the others), we multiply all three equations to get $(a^2b^2c^2)^2=(28)(27)(21)$, which implies $a^2b^2c^2=\sqrt{(28)(27)(21)}=\sqrt{(4\cdot 7)(9\cdot 3)(3\cdot 7.2\cdot 3\dot3\cdot 7=126.$ Dividing this equation by each of the three original equations gives $c^2 = 9/2$, $a^2 = 6$, and $b^2=14/3$, respectively. Since $b

michaelcai Oct 12, 2017