+0  
 
+2
434
1
avatar+295 

Suppose that sec(t)=-13/3 and that t is in quadrant 2. Find the exact value of tan(t).

Deathstroke_rule  Mar 26, 2017
edited by Deathstroke_rule  Mar 26, 2017

Best Answer 

 #1
avatar+7155 
+3

\(\sec(t) = -\frac{13}{3} \\~\\ \cos(t)=-\frac{3}{13}\)

 

Here is a drawing of that:

 

By the definition of tangent:

\(\tan (t)=\frac{y}{-3/13}\)

 

Solve for y with the pythagorean theorem.

\(y^2+(-\frac{3}{13})^2=1 \\~\\ y^2=1-\frac{9}{169} \\~\\ y=\sqrt{\frac{160}{169}} \\~\\ y=\frac{4\sqrt{10}}{13}\)

 

Now substitute.

\(\tan (t)=\frac{(\frac{4\sqrt{10}}{13})}{-3/13} \\~\\ \tan(t)=(\frac{4\sqrt{10}}{13})*(-\frac{13}{3}) \\~\\ \tan(t)=-\frac{4\sqrt{10}}{3}\)

hectictar  Mar 26, 2017
 #1
avatar+7155 
+3
Best Answer

\(\sec(t) = -\frac{13}{3} \\~\\ \cos(t)=-\frac{3}{13}\)

 

Here is a drawing of that:

 

By the definition of tangent:

\(\tan (t)=\frac{y}{-3/13}\)

 

Solve for y with the pythagorean theorem.

\(y^2+(-\frac{3}{13})^2=1 \\~\\ y^2=1-\frac{9}{169} \\~\\ y=\sqrt{\frac{160}{169}} \\~\\ y=\frac{4\sqrt{10}}{13}\)

 

Now substitute.

\(\tan (t)=\frac{(\frac{4\sqrt{10}}{13})}{-3/13} \\~\\ \tan(t)=(\frac{4\sqrt{10}}{13})*(-\frac{13}{3}) \\~\\ \tan(t)=-\frac{4\sqrt{10}}{3}\)

hectictar  Mar 26, 2017

8 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.