+0  
 
+1
2371
2
avatar+619 

Suppose the function $f$ has all real numbers in its domain and range and is invertible. Some values of $f$ are given by the following table: \($$\begin{array}{c || c | c | c | c | c} x & 1 & 2 & 3 & 4 & 5 \\ \hline f(x) & 2 & 3 & 5 & 7 & 8 \end{array}$$\)What is the value of $f(f(3)) + f(f^{-1}(4)) + f^{-1}(f^{-1}(5))?$ If there is not enough information to answer this question, enter "NEI".

 Nov 3, 2017
 #1
avatar+536 
0

I think it is

 

3f^2+4+5/f^2

 

I hope!

 Nov 3, 2017
 #2
avatar+129899 
+3

\(f(f(3)) + f(f^{-1}(4)) + f^{-1}(f^{-1}(5))\)

 

f (3)  = 5

 

f(f(3))  = f (5)  = 8

 

And   f( f-1) (4))   =  4

 

And   f-1 ( f-1(5) )      =  f-1 (3)  =  2

 

 

 

So

 

8+ 4  + 2  =  14

 

 

CORRECTED  !!!!

 

 

cool cool cool

 Nov 3, 2017
edited by CPhill  Aug 8, 2022
edited by CPhill  Aug 8, 2022
edited by CPhill  Aug 8, 2022

4 Online Users