+0  
 
0
34
2
avatar+417 

Suppose the function $f$ has all real numbers in its domain and range and is invertible. Some values of $f$ are given by the following table: \($$\begin{array}{c || c | c | c | c | c} x & 1 & 2 & 3 & 4 & 5 \\ \hline f(x) & 2 & 3 & 5 & 7 & 8 \end{array}$$\)What is the value of $f(f(3)) + f(f^{-1}(4)) + f^{-1}(f^{-1}(5))?$ If there is not enough information to answer this question, enter "NEI".

michaelcai  Nov 3, 2017
Sort: 

2+0 Answers

 #1
avatar+492 
0

I think it is

 

3f^2+4+5/f^2

 

I hope!

ProMagma  Nov 3, 2017
 #2
avatar+78729 
+1

\(f(f(3)) + f(f^{-1}(4)) + f^{-1}(f^{-1}(5))\)

 

f (3)  = 5

 

So   f(f(3))  =  f(5)  =   8

 

f-1 (5)  = 3

 

So   f-1 ( f-1(5) )      =  f-1 (3)  =  2

 

But    f-1 (4)   is   unknown

 

So

 

NEI

 

 

 

cool cool cool

CPhill  Nov 3, 2017

10 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details