Find the ordered pair, (s, t) that satisfies the system
(s/2) - 3t = -1,
3t - 2s = 3 + s - t
\(\begin{bmatrix}\left(\frac{s}{2}\right)-3t=-1\\ 3t-2s=3+s-t\end{bmatrix}\)
\(\mathrm{Substitute\:}s=-2+6t\)
\(\begin{bmatrix}3t-2\left(-2+6t\right)=3-2+6t-t\end{bmatrix}\)
\(\begin{bmatrix}-9t+4=5t+1\end{bmatrix}\)
\(t=3/14\)
\(\mathrm{Substitute\:} t\)
\(s=-2+6\cdot \frac{3}{14}\)
\(s=-5/7\)
\(=\)\((-5/7, 3/14)\)
.
\(\begin{bmatrix}\left(\frac{s}{2}\right)-3t=-1\\ 3t-2s=3+s-t\end{bmatrix}\)
\(\mathrm{Substitute\:}s=-2+6t\)
\(\begin{bmatrix}3t-2\left(-2+6t\right)=3-2+6t-t\end{bmatrix}\)
\(\begin{bmatrix}-9t+4=5t+1\end{bmatrix}\)
\(t=3/14\)
\(\mathrm{Substitute\:} t\)
\(s=-2+6\cdot \frac{3}{14}\)
\(s=-5/7\)
\(=\)\((-5/7, 3/14)\)