GIven the system of equations,
xy= 6 - 2x - 3y
yz= 6 - 4y - 2z
xz= 156 - 4x - 3z
find the positive solution for x
xy = 6 - 2x - 3y
yz = 6 - 4y - 2z
xz = 156 - 4x - 3z
xy + 3y = 6 - 2x xz + 3z = 156 - 4x
y ( x + 3) = 5 -2x z( x + 3) = 156 - 4x
y = (6-2x) / ( x + 3) z = (156 - 4x) / ( x + 3)
(6-2x)(156 - 4x) / (x + 3)^2 = 6 - 4 ( 6-2x)/(x + 3) -2 (156 - 4x)/(x + 3) simplify
(6 -2x) (156 - 4x) = 6( x + 3)^2 - 4(6 - 2x)(x + 3) - 2(156- 4x)(x + 3)
8x^2 -336x +936 = 6x^2 + 36x + 54 + 8x^2 -72 + 8x^2 -288x -936
14x^2 + 84x -1890 = 0
7x^2 + 42x - 945 = 0
x^2 + 6x - 135 = 0
(x -9) ( x + 15) = 0
x = 9 is the positive solution for x