+0  
 
0
144
1
avatar

The table of values represents a polynomial function f (x).

How much greater is the average rate of change over the interval  [5, 7]  than the interval [2, 4]?

 

X values:      2       3      4     5      6       7

F(x) values: 39   125  287 549 935 1469

 

Thanks for all of your help

Guest Mar 30, 2018

Best Answer 

 #1
avatar+7065 
+3

avg rate of change over the interval [5, 7]   =   \(\frac{f(7)-f(5)}{7-5}\)

 

avg rate of change over the interval [5, 7]   =   \(\frac{1469-549}{7-5}\)

 

avg rate of change over the interval [5, 7]   =   \(\frac{920}{2}\)

 

avg rate of change over the interval [5, 7]   =   460

 

avg rate of change over the interval [2, 4]   =   \(\frac{f(4)-f(2)}{4-2}\)

 

avg rate of change over the interval [2, 4]   =   \(\frac{287-39}{4-2}\)

 

avg rate of change over the interval [2, 4]   =   \(\frac{248}{2}\)

 

avg rate of change over the interval [2, 4]   =   124

 

How much greater is the avg rate of change over the interval  [5, 7]  than the avg rate of change over the interval  [2, 4] ? That is...how much greater is  460  than  124 ?

 

460 - 124  =  336

 

460  is  336  greater than  124 .

hectictar  Mar 30, 2018
 #1
avatar+7065 
+3
Best Answer

avg rate of change over the interval [5, 7]   =   \(\frac{f(7)-f(5)}{7-5}\)

 

avg rate of change over the interval [5, 7]   =   \(\frac{1469-549}{7-5}\)

 

avg rate of change over the interval [5, 7]   =   \(\frac{920}{2}\)

 

avg rate of change over the interval [5, 7]   =   460

 

avg rate of change over the interval [2, 4]   =   \(\frac{f(4)-f(2)}{4-2}\)

 

avg rate of change over the interval [2, 4]   =   \(\frac{287-39}{4-2}\)

 

avg rate of change over the interval [2, 4]   =   \(\frac{248}{2}\)

 

avg rate of change over the interval [2, 4]   =   124

 

How much greater is the avg rate of change over the interval  [5, 7]  than the avg rate of change over the interval  [2, 4] ? That is...how much greater is  460  than  124 ?

 

460 - 124  =  336

 

460  is  336  greater than  124 .

hectictar  Mar 30, 2018

8 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.