$$\\tan(sin^{-1}\left(\frac{-\sqrt3}{2}\right))\\\\
\mbox{Consider }\qquad sin^{-1}\left(\frac{-\sqrt3}{2}\right)\\\\
\frac{-\pi}{2}\le sin^{-1}\left(\frac{-\sqrt3}{2}\right)\le \frac{\pi}{2}\\\\
\mbox{The inverse sine is negative so the angle is in the 4th quad}\\
\mbox{Keep this in mind but look for the equivalent 1st quadrant answer}\\$$
$$\\sin^{-1}\left(\frac{\sqrt3}{2}\right)=60^0\\\\
tan60^0=\sqrt3\\$$
But it is not really 60degrees $$\frac{\pi}{3}\;radians$$ because it is in the 4th quad i.e. $$\frac{5\pi}{3}$$ radians
So therefore the answer is $$-\sqrt{3}$$
$$\\tan(sin^{-1}\left(\frac{-\sqrt3}{2}\right))=\;-\sqrt3$$
.
$$\\tan(sin^{-1}\left(\frac{-\sqrt3}{2}\right))\\\\
\mbox{Consider }\qquad sin^{-1}\left(\frac{-\sqrt3}{2}\right)\\\\
\frac{-\pi}{2}\le sin^{-1}\left(\frac{-\sqrt3}{2}\right)\le \frac{\pi}{2}\\\\
\mbox{The inverse sine is negative so the angle is in the 4th quad}\\
\mbox{Keep this in mind but look for the equivalent 1st quadrant answer}\\$$
$$\\sin^{-1}\left(\frac{\sqrt3}{2}\right)=60^0\\\\
tan60^0=\sqrt3\\$$
But it is not really 60degrees $$\frac{\pi}{3}\;radians$$ because it is in the 4th quad i.e. $$\frac{5\pi}{3}$$ radians
So therefore the answer is $$-\sqrt{3}$$
$$\\tan(sin^{-1}\left(\frac{-\sqrt3}{2}\right))=\;-\sqrt3$$