+0  
 
0
1530
2
avatar

tan(sin^-1(-sqrt3/2))=?

 Jul 29, 2014

Best Answer 

 #2
avatar+118680 
+5

 

$$\\tan(sin^{-1}\left(\frac{-\sqrt3}{2}\right))\\\\
\mbox{Consider }\qquad sin^{-1}\left(\frac{-\sqrt3}{2}\right)\\\\
\frac{-\pi}{2}\le sin^{-1}\left(\frac{-\sqrt3}{2}\right)\le \frac{\pi}{2}\\\\
\mbox{The inverse sine is negative so the angle is in the 4th quad}\\
\mbox{Keep this in mind but look for the equivalent 1st quadrant answer}\\$$

$$\\sin^{-1}\left(\frac{\sqrt3}{2}\right)=60^0\\\\
tan60^0=\sqrt3\\$$

But it is  not really 60degrees    $$\frac{\pi}{3}\;radians$$    because it is in the 4th quad i.e.  $$\frac{5\pi}{3}$$  radians

So therefore the answer is $$-\sqrt{3}$$

 

$$\\tan(sin^{-1}\left(\frac{-\sqrt3}{2}\right))=\;-\sqrt3$$

.
 Jul 30, 2014
 #1
avatar+4473 
0

tan(asin(-sqrt(3)/2)) = -1.73205080757

 Jul 29, 2014
 #2
avatar+118680 
+5
Best Answer

 

$$\\tan(sin^{-1}\left(\frac{-\sqrt3}{2}\right))\\\\
\mbox{Consider }\qquad sin^{-1}\left(\frac{-\sqrt3}{2}\right)\\\\
\frac{-\pi}{2}\le sin^{-1}\left(\frac{-\sqrt3}{2}\right)\le \frac{\pi}{2}\\\\
\mbox{The inverse sine is negative so the angle is in the 4th quad}\\
\mbox{Keep this in mind but look for the equivalent 1st quadrant answer}\\$$

$$\\sin^{-1}\left(\frac{\sqrt3}{2}\right)=60^0\\\\
tan60^0=\sqrt3\\$$

But it is  not really 60degrees    $$\frac{\pi}{3}\;radians$$    because it is in the 4th quad i.e.  $$\frac{5\pi}{3}$$  radians

So therefore the answer is $$-\sqrt{3}$$

 

$$\\tan(sin^{-1}\left(\frac{-\sqrt3}{2}\right))=\;-\sqrt3$$

Melody Jul 30, 2014

2 Online Users

avatar
avatar