Great work Chris and Geno.
I'm going to hit it a different way.
$$\\\tan(\alpha+\beta)=\frac{tan\alpha+tan\beta}{1-tan\alpha tan\beta}\\\\
\tan(2x)=\frac{2tanx}{1-tan^2x}\\\\\\$$
so draw a right angled triangle and make one of the acute angles = 2x
the opposite side is $$2tanx=2*2=4$$
the adjacent side is $$1-tan^2x=1-2^2=1-4=-3$$ (the negative sign just means it will not be in the first quad )
Using pythagoras the hypotenuse will be
$$\\h=\sqrt{4^2+(-3)^2}\\
h=\sqrt{16+9}\\
h=\sqrt{25}\\
h=5\\$$
so
$$\\cos(2x)
=\frac{adj}{hyp}
=\frac{-3}{5}
=\;-0.6$$
If tan(x) = 2, the x = 63.435°.
cos(2x) = cos(2·63.435°) = cos(126.870°) = -0.6
This can also be done without a calculator, if you need that explanation, please repost.
If tan x = 2, then y / x = 2 / 1
Then, using, √(x2 + y2 ) = r
√(22 + 12) = √5 = r
So sin x = y/r = 2/√5
And using
cos 2x = 1 - 2(sin x)2
cos 2x = 1 - 2(2/√5)2
cos 2x = 1 - 2 (4/5)
cos 2x = 1 - 8/5
cos 2x = -3/5 = -(.6) .....as geno found !!!!!!!
Great work Chris and Geno.
I'm going to hit it a different way.
$$\\\tan(\alpha+\beta)=\frac{tan\alpha+tan\beta}{1-tan\alpha tan\beta}\\\\
\tan(2x)=\frac{2tanx}{1-tan^2x}\\\\\\$$
so draw a right angled triangle and make one of the acute angles = 2x
the opposite side is $$2tanx=2*2=4$$
the adjacent side is $$1-tan^2x=1-2^2=1-4=-3$$ (the negative sign just means it will not be in the first quad )
Using pythagoras the hypotenuse will be
$$\\h=\sqrt{4^2+(-3)^2}\\
h=\sqrt{16+9}\\
h=\sqrt{25}\\
h=5\\$$
so
$$\\cos(2x)
=\frac{adj}{hyp}
=\frac{-3}{5}
=\;-0.6$$