Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
2626
5
avatar

Tan x=2 ,cos2x=?

 Oct 6, 2014

Best Answer 

 #3
avatar+118703 
+10

Great work Chris and Geno.

I'm going to hit it a different way.

 

tan(α+β)=tanα+tanβ1tanαtanβtan(2x)=2tanx1tan2x

 

so draw a right angled triangle and make one of the acute angles = 2x

 

the opposite side is 2tanx=22=4

 

the adjacent side is 1tan2x=122=14=3    (the negative sign just means it will not be in the first quad )

 

Using pythagoras the hypotenuse will be

 

h=42+(3)2h=16+9h=25h=5

so

 

cos(2x)=adjhyp=35=0.6

 Oct 7, 2014
 #1
avatar+23254 
+5

If  tan(x) = 2, the x = 63.435°.

cos(2x) = cos(2·63.435°) = cos(126.870°) = -0.6

This can also be done without a calculator, if you need that explanation, please repost.

 Oct 6, 2014
 #2
avatar+130466 
+10

If tan x = 2, then y / x = 2 / 1

Then, using, √(x2 + y2 ) = r 

√(22 + 12) = √5 = r

So sin x = y/r =  2/√5

And using

cos 2x = 1 - 2(sin x)2

cos 2x = 1 - 2(2/√5)2

cos 2x = 1 - 2 (4/5)

cos 2x = 1 - 8/5

cos 2x = -3/5 = -(.6)     .....as geno found   !!!!!!!

 

 Oct 6, 2014
 #3
avatar+118703 
+10
Best Answer

Great work Chris and Geno.

I'm going to hit it a different way.

 

tan(α+β)=tanα+tanβ1tanαtanβtan(2x)=2tanx1tan2x

 

so draw a right angled triangle and make one of the acute angles = 2x

 

the opposite side is 2tanx=22=4

 

the adjacent side is 1tan2x=122=14=3    (the negative sign just means it will not be in the first quad )

 

Using pythagoras the hypotenuse will be

 

h=42+(3)2h=16+9h=25h=5

so

 

cos(2x)=adjhyp=35=0.6

Melody Oct 7, 2014
 #4
avatar+33654 
+5

Here's yet another way:

 

tanx = 2 implies sinx = 2cosx  ...(1)

 

cos2x = cos2x - sin2x.     Using (1) this is  cos2x = -3cos2x  ...(2)

 

sin2x + cos2x = 1.     Using (1) this is 5cos2x = 1   which means that  cos2x = 1/5   ...(3)

 

Put (3) in (2) to get   cos2x = -3/5

 Oct 7, 2014
 #5
avatar+118703 
0

Thanks,

It is great when we all weigh in like this.

I like Chris's and Alan's ways best but they are all good.   

 Oct 7, 2014

2 Online Users