+0  
 
0
588
1
avatar

(tan x)^2 − tan x − 42 = 0

Guest Apr 17, 2015

Best Answer 

 #1
avatar+20037 
+10

(tan x)^2 − tan x − 42 = 0

We substitute:  $$\small{\text{$z=\tan{(x)}$}}$$

So we have: $$\small{\text{$z^2 -z - 42 = 0$}}$$

$$\small{\text{$
z_{1,2}=\frac{ 1\pm \sqrt{1-4\cdot(-42)} }{2\cdot 1}
=\frac{ 1\pm \sqrt{1+168 } }{2}
=\frac{ 1\pm \sqrt{169 } }{2}
=\frac{ 1\pm 13 }{2}
$}}\\\\
\small{\text{
$\begin{array}{l|l}
\hline
\\
z_1=\frac{ 1 + 13 }{2} \quad & \quad z_2=\frac{ 1 - 13 }{2}\\\\
z_1=\frac{ 14 }{2} \quad & \quad z_2=-\frac{ 12 }{2}\\\\
z_1=7 \quad & \quad z_2=-6\\\\
\hline
\\
\tan{(x_1)}=z_1=7 \quad & \quad \tan{(x_2)}=z_2=-6 \\\\
x_1 = \arctan(7) \quad & \quad x_2 = \arctan(-6)\\\\
\boxed{x_1 = 81.8698976458\ensurement{^{\circ}} \pm k\cdot 180\ensurement{^{\circ}}} \quad & \quad \boxed{ x_2 = -80.5376777920\ensurement{^{\circ}}\pm k\cdot 180\ensurement{^{\circ}}}
\end{array}
$}}$$
  

k= 0,1,2, ...

heureka  Apr 17, 2015
 #1
avatar+20037 
+10
Best Answer

(tan x)^2 − tan x − 42 = 0

We substitute:  $$\small{\text{$z=\tan{(x)}$}}$$

So we have: $$\small{\text{$z^2 -z - 42 = 0$}}$$

$$\small{\text{$
z_{1,2}=\frac{ 1\pm \sqrt{1-4\cdot(-42)} }{2\cdot 1}
=\frac{ 1\pm \sqrt{1+168 } }{2}
=\frac{ 1\pm \sqrt{169 } }{2}
=\frac{ 1\pm 13 }{2}
$}}\\\\
\small{\text{
$\begin{array}{l|l}
\hline
\\
z_1=\frac{ 1 + 13 }{2} \quad & \quad z_2=\frac{ 1 - 13 }{2}\\\\
z_1=\frac{ 14 }{2} \quad & \quad z_2=-\frac{ 12 }{2}\\\\
z_1=7 \quad & \quad z_2=-6\\\\
\hline
\\
\tan{(x_1)}=z_1=7 \quad & \quad \tan{(x_2)}=z_2=-6 \\\\
x_1 = \arctan(7) \quad & \quad x_2 = \arctan(-6)\\\\
\boxed{x_1 = 81.8698976458\ensurement{^{\circ}} \pm k\cdot 180\ensurement{^{\circ}}} \quad & \quad \boxed{ x_2 = -80.5376777920\ensurement{^{\circ}}\pm k\cdot 180\ensurement{^{\circ}}}
\end{array}
$}}$$
  

k= 0,1,2, ...

heureka  Apr 17, 2015

13 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.