+0  
 
0
434
2
avatar

(tan15∘)x(tan25∘)x(tan35∘)x(tan85∘)
I know the answer but I do not know the solution
answer: 1
help me pls 

Guest Mar 28, 2017
 #1
avatar+19653 
+1

(tan15∘)x(tan25∘)x(tan35∘)x(tan85∘)

 

Formula:

\(\begin{array}{|lcll|} \hline \sin (x) \; \sin (y) = \frac{1}{2}\Big(\cos (x-y) - \cos (x+y)\Big) \\ \cos (x) \; \cos (y) = \frac{1}{2}\Big(\cos (x-y) + \cos (x+y)\Big) \\ \sin (2x) = 2\cdot \sin(x)\cdot \cos(x) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && \tan(15^{\circ})\cdot \tan(25^{\circ})\cdot \tan(35^{\circ})\cdot \tan(85^{\circ}) \\ &=& \frac{\sin(15^{\circ})\cdot \sin(25^{\circ})\cdot \sin(35^{\circ})\cdot \sin(85^{\circ})} {\cos(15^{\circ})\cdot \cos(25^{\circ})\cdot \cos(35^{\circ})\cdot \cos(85^{\circ})} \\ &=& \frac{ [\sin(85^{\circ})\cdot\sin(15^{\circ})]\cdot [\sin(35^{\circ})\cdot \sin(25^{\circ})] } { [\cos(85^{\circ})\cdot\cos(15^{\circ})]\cdot [\cos(35^{\circ})\cdot \cos(25^{\circ})] } \\\\ && \sin(85^{\circ})\cdot\sin(15^{\circ}) = \frac{1}{2}\Big(\cos (85^{\circ}-15^{\circ}) - \cos (85^{\circ}+15^{\circ})\Big) \\ && \mathbf{ \sin(85^{\circ})\cdot\sin(15^{\circ}) = \frac{1}{2}\Big(\cos (70^{\circ}) - \cos (100^{\circ})\Big) } \\\\ && \sin(35^{\circ})\cdot\sin(25^{\circ}) = \frac{1}{2}\Big(\cos (35^{\circ}-25^{\circ}) - \cos (35^{\circ}+25^{\circ})\Big) \\ && \mathbf{ \sin(35^{\circ})\cdot\sin(25^{\circ}) = \frac{1}{2}\Big(\cos (10^{\circ}) - \cos (60^{\circ})\Big) } \\\\ && \cos(85^{\circ})\cdot\cos(15^{\circ}) = \frac{1}{2}\Big(\cos (85^{\circ}-15^{\circ}) + \cos (85^{\circ}+15^{\circ})\Big) \\ && \mathbf{ \cos(85^{\circ})\cdot\cos(15^{\circ}) = \frac{1}{2}\Big(\cos (70^{\circ}) + \cos (100^{\circ})\Big) } \\\\ && \cos(35^{\circ})\cdot\cos(25^{\circ}) = \frac{1}{2}\Big(\cos (35^{\circ}-25^{\circ}) + \cos (35^{\circ}+25^{\circ})\Big) \\ && \mathbf{ \cos(35^{\circ})\cdot\cos(25^{\circ}) = \frac{1}{2}\Big(\cos (10^{\circ}) + \cos (60^{\circ})\Big) } \\\\ &=& \frac{ \frac{1}{2}\Big(\cos (70^{\circ}) - \cos (100^{\circ})\Big) \cdot \frac{1}{2}\Big(\cos (10^{\circ}) - \cos (60^{\circ})\Big) } { \frac{1}{2}\Big(\cos (70^{\circ}) + \cos (100^{\circ})\Big) \cdot \frac{1}{2}\Big(\cos (10^{\circ}) + \cos (60^{\circ})\Big) } \\\\ &=& \frac{ \Big(\cos (70^{\circ}) - \cos (100^{\circ})\Big) \cdot \Big(\cos (10^{\circ}) - \cos (60^{\circ})\Big) } { \Big(\cos (70^{\circ}) + \cos (100^{\circ})\Big) \cdot \Big(\cos (10^{\circ}) + \cos (60^{\circ})\Big) } \quad | \quad \cos(100^{\circ}) = \cos(90^{\circ}+10^{\circ})=-\sin(10^{\circ}) \\\\ &=& \frac{ \Big(\cos (70^{\circ}) + \sin(10^{\circ})\Big) \cdot \Big(\cos (10^{\circ}) - \cos (60^{\circ})\Big) } { \Big(\cos (70^{\circ}) - \sin(10^{\circ})\Big) \cdot \Big(\cos (10^{\circ}) + \cos (60^{\circ})\Big) } \quad | \quad \cos(70^{\circ}) = \cos(90^{\circ}-20^{\circ})=\sin(20^{\circ}) \\\\ &=& \frac{ \Big(\sin(20^{\circ}) + \sin(10^{\circ})\Big) \cdot \Big(\cos (10^{\circ}) - \cos (60^{\circ})\Big) } { \Big(\sin(20^{\circ}) - \sin(10^{\circ})\Big) \cdot \Big(\cos (10^{\circ}) + \cos (60^{\circ})\Big) } \quad | \quad \cos(60^{\circ}) = \frac{1}{2} \\\\ &=& \frac{ \Big(\sin(20^{\circ}) + \sin(10^{\circ})\Big) \cdot \Big(\cos (10^{\circ}) - \frac{1}{2}\Big) } { \Big(\sin(20^{\circ}) - \sin(10^{\circ})\Big) \cdot \Big(\cos (10^{\circ}) + \frac{1}{2}\Big) } \\\\ &=& \frac{ \sin(20^{\circ})\cdot \cos (10^{\circ}) - \frac{1}{2}\cdot \sin(20^{\circ})+\sin(10^{\circ})\cdot \cos (10^{\circ}) - \frac{1}{2} \cdot \sin(10^{\circ}) } { \sin(20^{\circ})\cdot \cos (10^{\circ}) + \frac{1}{2}\cdot \sin(20^{\circ})-\sin(10^{\circ})\cdot \cos (10^{\circ}) - \frac{1}{2} \cdot \sin(10^{\circ}) } \quad | \quad \sin(10^{\circ})\cdot \cos (10^{\circ}) = \frac{1}{2}\cdot \sin(20^{\circ}) \\\\ &=& \frac{ \sin(20^{\circ})\cdot \cos (10^{\circ}) - \frac{1}{2}\cdot \sin(20^{\circ})+\frac{1}{2}\cdot \sin(20^{\circ}) - \frac{1}{2} \cdot \sin(10^{\circ}) } { \sin(20^{\circ})\cdot \cos (10^{\circ}) + \frac{1}{2}\cdot \sin(20^{\circ})-\frac{1}{2}\cdot \sin(20^{\circ}) - \frac{1}{2} \cdot \sin(10^{\circ}) } \quad | \quad \frac{1}{2}\cdot \sin(20^{\circ})-\frac{1}{2}\cdot \sin(20^{\circ}) = 0 \\\\ &=& \frac{ \sin(20^{\circ})\cdot \cos (10^{\circ}) + 0 - \frac{1}{2} \cdot \sin(10^{\circ}) } { \sin(20^{\circ})\cdot \cos (10^{\circ}) + 0 - \frac{1}{2} \cdot \sin(10^{\circ}) } \\\\ &=& \frac{ \sin(20^{\circ})\cdot \cos (10^{\circ}) - \frac{1}{2} \cdot \sin(10^{\circ}) } { \sin(20^{\circ})\cdot \cos (10^{\circ}) - \frac{1}{2} \cdot \sin(10^{\circ}) } \\\\ &=& 1 \\ \hline \end{array}\)

 

laugh

heureka  Mar 29, 2017
 #2
avatar+92806 
+1

Thanks Heureka :)

I have only just started working through this.

I am sure it is very clear and I will have no problem following it.

However, I would not have been able to put that string of logic together myself.  

Maybe as I work through it some light may come on for me,

I hope so  :))

Melody  Mar 29, 2017

11 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.