+0  
 
0
60
2
avatar

The curves Y=ax^2 +b and Y=2x^2 +cx have a common tangent line at the point (-1,0). Find a,b and c. 

 

Thank you

Guest May 1, 2018
Sort: 

2+0 Answers

 #1
avatar+86528 
+2

y = ax^2 + b        y  = 2x^2 + cx

 

Since the point (-1, 0)   is on both graphs

 

Using the first function, we have

 

0 = a(-1)^2 + b

 

0  =  a  + b

 

Using the second function, we have that

 

0 = 2(-1)^2 + c(-1)

0 = 2  - c

c = 2

 

Taking the derivative of both functions

 

y'  = 2ax               y'  = 4x + c

 

y' = 2ax               y' =  4x + 2

 

The slope of the tangent line is the same for both functions at x  = -1

 

So....equating slopes

 

2a(-1)   =  4(-1) + 2

 

-2a  =    -4 + 2

 

-2a  = = -2

 

a  =  1

 

And since a + b  = 0

 

b  =  -1

 

The equation of the tangent line is

 

y =  (4(-1) + 2) ( x  - -1)

 

y =  -2(x + 1)

 

y =  -2x -2

 

Here's a graph  :  https://www.desmos.com/calculator/2wiesd0ekz

 

 

cool cool cool

CPhill  May 1, 2018
 #2
avatar
+1

thank you!

Guest May 1, 2018

23 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy