+0  
 
0
159
1
avatar+222 

Two tangents \(\overline{PA}\) and \(\overline{PB}\) are drawn to a circle, where $P$ lies outside the circle, and $A$ and $B$ lie on the circle. The length of $PA$ is $12,$ and the circle has a radius of $9.$ Find the length $AB.$

 Jun 9, 2020
 #1
avatar+21953 
0

PA and PB are tangents to circle(O).  Draw PO. Draw AB. Let X be the point where PO and aB intersect.

PA = 12   and   OA = 9

 

Because triangle(OPA) is a right triangle, PO = 15.

 

Triangle(AXO is similar to triangle(PAO)   --->   AX / AO  =  PA / PO   --->   AX / 9  =  12 / 15

--->   AX  =  7.2

 

Since X is the midpoint of AB   --->   AB  =  14.4.

 Jun 9, 2020

12 Online Users

avatar