If \(k = \frac{1}{1+2x}\), where x is an integer greater than 1 and k can be represented as a terminating decimal, find the sum of all possible values of k.
Rom: I got different result!!:
k =(0.2, 0.04, 0.008, 0.0016, 0.00032, 0.00006 4, 0.00001 28, 0.00000 256, 0.00000 0512, 0.00000 01024.....to infinity)
x = (2, 12, 62, 312, 1 562, 7 812, 39 062, 195 312, 976 562, 4 882 812......to infinity)
k = ∑[1/(1+2*(5^n - 1)/2), n, 1,∞] = 1/4