We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
55
2
avatar

Calculate a normal vector n to the plane through the points triple A = (1,-2,1), B = (-3,1,4), C = (1,1,2), as in the picture below, such that if

\(\mathbf{n} = \begin{pmatrix}n_1 \\ n_2 \\ n_3 \end{pmatrix}, \)

and \(n_1 + n_2 + n_3 = 7. \)

 Aug 17, 2019
 #1
avatar+5766 
+1

\(AB=B-A\\ AC=C-A\\ n = AB \times AC\\ \hat{n} = \dfrac{n}{\|n\|}\\ \text{The scaled version of the normal vector the problem is after is $-7\hat{n}$}\)

 

I leave plugging and chugging to you.

 Aug 17, 2019
 #2
avatar+23041 
+2

Calculate a normal vector n to the plane through the points
triple A = (1,-2,1), B = (-3,1,4), C = (1,1,2), as in the picture below,
such that if
\(\mathbf{n} = \begin{pmatrix}n_1 \\ n_2 \\ n_3 \end{pmatrix}\),
and \(n_1 + n_2 + n_3 = 7\).

\(\text{Let $\vec{v} = \vec{B} - \vec{C}$ } \\ \text{Let $\vec{w} = \vec{A} - \vec{C}$ }\)

 

\(\begin{array}{|rcll|} \hline \vec{v} &=& \begin{pmatrix}-3 \\ 1 \\ 4 \end{pmatrix} - \begin{pmatrix}1 \\1\\ 2\end{pmatrix} \\ \mathbf{\vec{v}} &=& \begin{pmatrix}\mathbf{-4} \\ \mathbf{0} \\ \mathbf{2} \end{pmatrix} \\\\ \vec{w} &=& \begin{pmatrix}1 \\ -2 \\ 1 \end{pmatrix} - \begin{pmatrix}1 \\1\\ 2\end{pmatrix} \\ \mathbf{\vec{w}} &=& \begin{pmatrix}\mathbf{0} \\ \mathbf{-3} \\ \mathbf{-1} \end{pmatrix} \\ \hline \end{array}\)

 

1.

Vector cross product

\(\small{ \begin{array}{|lrcll|} \hline & \vec{n} =\begin{pmatrix}n_1 \\ n_2 \\ n_3 \end{pmatrix}&=& \vec{v} \times \vec{w} \\\\ & &=& \begin{pmatrix}\mathbf{-4} \\ \mathbf{0} \\ \mathbf{2} \end{pmatrix} \times \begin{pmatrix}\mathbf{0} \\ \mathbf{-3} \\ \mathbf{-1} \end{pmatrix} \\\\ & &=& \begin{vmatrix}1&1&1 \\ -4&0&2 \\ 0&-3&-1 \end{vmatrix} \\\\ & &=& \begin{pmatrix} 6 \\ -4 \\ 12 \end{pmatrix} \\ \hline n_1+n_2+n_3: & 6-4+12 &=& 14 \quad | \quad \cdot \dfrac{7}{14} \\\\ & 6\cdot\dfrac{7}{14}-4\cdot\dfrac{7}{14}+12\cdot\dfrac{7}{14} &=& 14\cdot\dfrac{7}{14} \\\\ &\mathbf{ 3-2+6 }&=& \mathbf{7} \\\\ & \vec{n} &=& \begin{pmatrix}\mathbf{3} \\ \mathbf{-2} \\ \mathbf{6} \end{pmatrix} \\ \hline \end{array} }\)

 

2.

Vector dot product

\(\begin{array}{|lrcll|} \hline & \vec{n}\cdot \vec{v} &=& 0 \\ & \begin{pmatrix}n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot \begin{pmatrix}\mathbf{-4} \\ \mathbf{0} \\ \mathbf{2} \end{pmatrix} &=& 0 \\ (1)& \mathbf{-4n_1+2n_3} &=& \mathbf{0} \\ \hline & \vec{n}\cdot \vec{w} &=& 0 \\ & \begin{pmatrix}n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot \begin{pmatrix}\mathbf{0} \\ \mathbf{-3} \\ \mathbf{-1} \end{pmatrix} &=& 0 \\ (2) & \mathbf{-3n_2-n_3} &=& \mathbf{0} \\ \hline (3) & \mathbf{n_1+n_2+n_3} &=& \mathbf{7} \\ \hline \hline \end{array}\)

\(\begin{array}{|lrcll|} \hline (1)& \mathbf{-4n_1+2n_3} &=& \mathbf{0} \\ &2n_3&=&4n_1 \quad | \quad :2 \\ & \mathbf{n_3} &=& \mathbf{2n_1} \\\\ (2) & \mathbf{-3n_2-n_3} &=& \mathbf{0} \\ & \mathbf{n_3} &=& \mathbf{-3n_2} \\\\ & n_3= 2n_1 &=& -3n_2 \\ & 2n_1 &=& -3n_2 \quad | \quad :2 \\ & \mathbf{n_1} &=& \mathbf{-\dfrac{3}{2}n_2} \\\\ (3) & \mathbf{n_1+n_2+n_3} &=& \mathbf{7} \\ & -\dfrac{3}{2}n_2 + n_2 + -3n_2 &=& 7 \\ & -\dfrac{3}{2}n_2 -2n_2 &=& 7 \quad | \quad \cdot (-1 )\\ & \dfrac{3}{2}n_2 +2n_2 &=& -7 \\ & \dfrac{7}{2}n_2 &=& -7 \quad | \quad \cdot \dfrac{2}{7} \\ & n_2 &=& -7\cdot \dfrac{2}{7} \\ & \mathbf{n_2} &=& \mathbf{-2} \\ \hline & n_3 &=& -3n_2 \\ & n_3 &=& -3\cdot (-2) \\ & \mathbf{n_2} &=& \mathbf{6} \\ \hline & n_1 &=& -\dfrac{3}{2}n_2 \\ & n_1 &=& \left(-\dfrac{3}{2}\right)\cdot(-2) \\ & \mathbf{n_2} &=& \mathbf{3} \\\\ & \mathbf{\vec{n}} &=& \begin{pmatrix}\mathbf{3} \\ \mathbf{-2} \\ \mathbf{6} \end{pmatrix} \\ \hline \end{array}\)

 

laugh

 Aug 17, 2019
edited by heureka  Aug 17, 2019

20 Online Users

avatar