+0  
 
0
36
1
avatar+604 

If $x^2 + bx + b + 3 = 0$ has roots of the form $\frac{-b \pm \sqrt{5}}{2}$, where $b > 0 $, then $b = m+\sqrt{n}$ for positive integers $m,n$. Find $m + n$.

gueesstt  May 6, 2018
Sort: 

1+0 Answers

 #1
avatar+19344 
+2

If $x^2 + bx + b + 3 = 0$ has roots of the form $\frac{-b \pm \sqrt{5}}{2}$, where $b > 0 $,

then $b = m+\sqrt{n}$ for positive integers $m,n$. Find $m + n$.

 

\(\begin{array}{|rcll|} \hline \left( x - \frac{-b +\sqrt{5}}{2} \right)\left( x - \frac{-b - \sqrt{5}}{2} \right) &=& x^2+bx+b+3 \\ \left( x + \frac{b}{2} -\frac{\sqrt{5}}{2} \right)\left( x + \frac{b}{2} +\frac{\sqrt{5}}{2} \right) &=& x^2+bx+b+3 \\ \left( ( x + \frac{b}{2}) -\frac{\sqrt{5}}{2} \right)\left( (x + \frac{b}{2}) +\frac{\sqrt{5}}{2} \right) &=& x^2+bx+b+3 \\ \left( x + \frac{b}{2} \right)^2- \left(\frac{\sqrt{5}}{2} \right)^2 &=& x^2+bx+b+3 \\ x^2+xb+\frac{b^2}{4}- \frac{5}{4} &=& x^2+bx+b+3 \\ \frac{b^2}{4}- \frac{5}{4} &=& b+3 \\ \frac{b^2}{4}-b - \frac{5}{4} -3 &=& 0 \quad & | \quad \cdot 4 \\ b^2-4b - 5 -12 &=& 0 \\ b^2-4b - 17 &=& 0 \\\\ b &=& \frac{4\pm \sqrt{16-4\cdot(-17)}}{2} \\ &=& \frac{4\pm \sqrt{16+68}}{2} \\ &=& \frac{4\pm \sqrt{84}}{2} \\ &=&2\pm \frac{\sqrt{84}}{2} \\ &=&2\pm \sqrt{\frac{84}{4}} \\ &=&2\pm \sqrt{21} \quad & | \quad b>0\ !\\\\ \mathbf{b} & \mathbf{=} & \mathbf{2+\sqrt{21} } \\ b &=& m+\sqrt{n} \quad & | \quad m = 2 \text{ and } n = 21 \\ \mathbf{m+n} &\mathbf{=}& \mathbf{2+21=23} \\ \hline \end{array}\)

 

laugh

heureka  May 7, 2018

20 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy