+0  
 
0
814
1
avatar+1836 

Thanks Melody for helping me so much on my last question! Another question!!

Suppose f(x) is a quadratic function such that f(1)=-24, f(4)=0, and f(7)=60.

Determine the value of f(-1).

 Jun 30, 2016

Best Answer 

 #1
avatar+129852 
+10

The form of a quadratic is   f(x) = ax^2 + bx + c .......and we have that

 

24 = a(1)^2  + b(1)  + c    →      24   =  a + b + c         (1)

0 =   a(4)^2  + b(4) + c    →         0  = 16a + 4b + c     (2)

60 = a(7)^2 + b(7) + c   →         60  =  49a +  7b + c    (3)

 

Multiply  (1) by -1 and add it to  (2)    

 

-24  = 15a + 3b      (4)

 

Multiply (1) by -1 and add it to (3)

 

36 =  48a + 6b   (5)

 

Multiply   (4) by -2 and add to (5)

 

84   = 18a    divide both sides by 18

 

84/18 = 14/3   = a

 

Substituting this into (4)  to find b, we have

 

-24  = 15(14/3)  + 3b

 

-72  = 15*14 + 9b

 

-72  = 210 + 9b

 

-282  = 9b     divide both sided by 9

 

-282/9   = -94/3  = b

 

And using (1)  to find  "c"  

 

14/3 -  94/3 + c   = 24

 

-80/3  + c = 24

 

c = 72/3 + 80/3 =   152/3

 

So....the quadratic is

 

y f(x) = (14/3)x^2 - (94/3)x + 152/3

 

And f(-1)   =    14/3  + 94/3 + 152/3   =   260/3   

 

Here's a graph : https://www.desmos.com/calculator/jjflwmz37w

 

 

 

cool cool cool

 

Here's the graph : 

 Jun 30, 2016
 #1
avatar+129852 
+10
Best Answer

The form of a quadratic is   f(x) = ax^2 + bx + c .......and we have that

 

24 = a(1)^2  + b(1)  + c    →      24   =  a + b + c         (1)

0 =   a(4)^2  + b(4) + c    →         0  = 16a + 4b + c     (2)

60 = a(7)^2 + b(7) + c   →         60  =  49a +  7b + c    (3)

 

Multiply  (1) by -1 and add it to  (2)    

 

-24  = 15a + 3b      (4)

 

Multiply (1) by -1 and add it to (3)

 

36 =  48a + 6b   (5)

 

Multiply   (4) by -2 and add to (5)

 

84   = 18a    divide both sides by 18

 

84/18 = 14/3   = a

 

Substituting this into (4)  to find b, we have

 

-24  = 15(14/3)  + 3b

 

-72  = 15*14 + 9b

 

-72  = 210 + 9b

 

-282  = 9b     divide both sided by 9

 

-282/9   = -94/3  = b

 

And using (1)  to find  "c"  

 

14/3 -  94/3 + c   = 24

 

-80/3  + c = 24

 

c = 72/3 + 80/3 =   152/3

 

So....the quadratic is

 

y f(x) = (14/3)x^2 - (94/3)x + 152/3

 

And f(-1)   =    14/3  + 94/3 + 152/3   =   260/3   

 

Here's a graph : https://www.desmos.com/calculator/jjflwmz37w

 

 

 

cool cool cool

 

Here's the graph : 

CPhill Jun 30, 2016

0 Online Users