+0  
 
0
418
3
avatar

The angle bisector of an angle divides the angle into two angles with equal measure. In the diagram below, \(A\) is on segment \(\overline{CE}\) and \(\overline{AB}\) bisects \(\angle CAD\). If we have \(\overline{DA}\parallel\overline{EF}\) and \(\angle AEF\) is \(12^\circ\) less than 10 times \(\angle BAC\), then what is \(\angle CAD\) in degrees?

Guest Oct 26, 2017

Best Answer 

 #2
avatar+7096 
+3

 

If we look at it like this, we can see that  ∠AEF  and  ∠CAD  will add to  180° .

 

∠AEF + ∠CAD  =  180°            Plug in   10( ∠BAC ) - 12°   for  ∠AEF .

 

10( ∠BAC ) - 12°   +   ∠CAD  =  180°             And since  AB bisects ∠CAD,  ∠CAD  =  2( ∠BAC ) .

 

10( ∠BAC ) - 12°   +   2( ∠BAC )  =  180°       Add  12°  to both sides of this equation.

 

10( ∠BAC ) + 2( ∠BAC )  =  180° + 12°          Combine like terms.

 

12( ∠BAC )  =  192°                Divide both sides by  12 .

 

∠BAC  =  16°

 

And remember that

 

∠CAD  =  2( ∠BAC )      So...

 

∠CAD  =  2( 16° )

 

∠CAD  =  32°

hectictar  Oct 26, 2017
edited by hectictar  Oct 26, 2017
 #1
avatar+60 
+1

I don't know that...

Conman13  Oct 26, 2017
 #2
avatar+7096 
+3
Best Answer

 

If we look at it like this, we can see that  ∠AEF  and  ∠CAD  will add to  180° .

 

∠AEF + ∠CAD  =  180°            Plug in   10( ∠BAC ) - 12°   for  ∠AEF .

 

10( ∠BAC ) - 12°   +   ∠CAD  =  180°             And since  AB bisects ∠CAD,  ∠CAD  =  2( ∠BAC ) .

 

10( ∠BAC ) - 12°   +   2( ∠BAC )  =  180°       Add  12°  to both sides of this equation.

 

10( ∠BAC ) + 2( ∠BAC )  =  180° + 12°          Combine like terms.

 

12( ∠BAC )  =  192°                Divide both sides by  12 .

 

∠BAC  =  16°

 

And remember that

 

∠CAD  =  2( ∠BAC )      So...

 

∠CAD  =  2( 16° )

 

∠CAD  =  32°

hectictar  Oct 26, 2017
edited by hectictar  Oct 26, 2017
 #3
avatar
+2

Thanks!!!

Guest Oct 26, 2017

11 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.