In your second step,the denominator did not change; you wrote 3 instead of 2 as the numerator in the first frist fraction.And there is something else wrong in your work.
You can do it in this way,
$${\frac{{\mathtt{2}}}{{\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right)}^{{\mathtt{2}}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{3}}}{\left({{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{9}}\right)}} = {\mathtt{0}}$$
plus 3/(x^2-9) both side
$${\frac{{\mathtt{2}}}{{\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right)}^{{\mathtt{2}}}}} = {\frac{{\mathtt{3}}}{\left({{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{9}}\right)}}$$
bot side times (x+3),
$${\frac{{\mathtt{2}}}{\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right)}} = {\frac{{\mathtt{3}}}{\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{3}}\right)}}$$
$${\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{6}} = {\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{9}}$$
$${\mathtt{x}} = -{\mathtt{15}}$$
check: 2/(-15+3)^2-3/(x^2-9)=1/72-1/72=0 and x=-15 not equal to 3 or -3.
another way:
$${\frac{{\mathtt{2}}}{{\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right)}^{{\mathtt{2}}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{3}}}{\left({{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{9}}\right)}} = {\mathtt{0}}$$
$${\frac{{\mathtt{2}}}{\left[\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right){\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right)\right]}}{\mathtt{\,-\,}}{\frac{{\mathtt{3}}}{\left(\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right){\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{3}}\right)\right)}} = {\mathtt{0}}$$
$${\frac{{\mathtt{2}}{\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{3}}\right)}{\left[\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right){\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right){\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{3}}\right)\right]}}{\mathtt{\,-\,}}{\frac{{\mathtt{3}}{\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right)}{\left[\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right){\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right){\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{3}}\right)\right]}} = {\mathtt{0}}$$
both sides of the equation multiply by (x+3)^2(x-3) (x not equal 3 or -3)
$${\mathtt{2}}{\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{3}}\right){\mathtt{\,-\,}}{\mathtt{3}}{\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right) = {\mathtt{0}}$$
$${\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{9}} = {\mathtt{0}}$$
$${\mathtt{\,-\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{15}} = {\mathtt{0}}$$
$${\mathtt{x}} = -{\mathtt{15}}$$
In your second step,the denominator did not change; you wrote 3 instead of 2 as the numerator in the first frist fraction.And there is something else wrong in your work.
You can do it in this way,
$${\frac{{\mathtt{2}}}{{\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right)}^{{\mathtt{2}}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{3}}}{\left({{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{9}}\right)}} = {\mathtt{0}}$$
plus 3/(x^2-9) both side
$${\frac{{\mathtt{2}}}{{\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right)}^{{\mathtt{2}}}}} = {\frac{{\mathtt{3}}}{\left({{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{9}}\right)}}$$
bot side times (x+3),
$${\frac{{\mathtt{2}}}{\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right)}} = {\frac{{\mathtt{3}}}{\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{3}}\right)}}$$
$${\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{6}} = {\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{9}}$$
$${\mathtt{x}} = -{\mathtt{15}}$$
check: 2/(-15+3)^2-3/(x^2-9)=1/72-1/72=0 and x=-15 not equal to 3 or -3.
another way:
$${\frac{{\mathtt{2}}}{{\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right)}^{{\mathtt{2}}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{3}}}{\left({{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{9}}\right)}} = {\mathtt{0}}$$
$${\frac{{\mathtt{2}}}{\left[\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right){\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right)\right]}}{\mathtt{\,-\,}}{\frac{{\mathtt{3}}}{\left(\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right){\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{3}}\right)\right)}} = {\mathtt{0}}$$
$${\frac{{\mathtt{2}}{\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{3}}\right)}{\left[\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right){\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right){\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{3}}\right)\right]}}{\mathtt{\,-\,}}{\frac{{\mathtt{3}}{\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right)}{\left[\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right){\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right){\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{3}}\right)\right]}} = {\mathtt{0}}$$
both sides of the equation multiply by (x+3)^2(x-3) (x not equal 3 or -3)
$${\mathtt{2}}{\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{3}}\right){\mathtt{\,-\,}}{\mathtt{3}}{\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right) = {\mathtt{0}}$$
$${\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{6}}{\mathtt{\,-\,}}{\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{9}} = {\mathtt{0}}$$
$${\mathtt{\,-\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{15}} = {\mathtt{0}}$$
$${\mathtt{x}} = -{\mathtt{15}}$$
Hey things happen.
nobodys perfect but a few people (but that is a all out opinion, so really nobodys perfect)