+0  
 
+8
706
6
avatar+1068 

The area of the equilateral triangle ABE = sin600(cm2). Line segment AI = 5cm. BF = EF =CI =DI ; find the area of the polygon DEGHI.

 

civonamzuk  May 29, 2015

Best Answer 

 #1
avatar+20009 
+18

The area of the equilateral triangle ABE = sin600(cm2). Line segment AI = 5cm. BF = EF ; find the area DEGHI.

 

AI = 5 cm

 

$$\mathbf{
\sin{(60\ensurement{^{\circ}})} = \frac{1}{2} \cdot \sqrt{3}
}\\
\mathbf{
\overline{AB} = \overline{BE} = \sqrt{2} \qquad
\overline{BF} = \overline{EF} =\frac{ \sqrt{2}} {2}
}\\
\mathbf{
\overline{AF} = \sqrt{2} \cdot \sin{(60\ensurement{^{\circ}})} = \frac{\sqrt{2} }{2} \cdot \sqrt{3}
}\\
\mathbf{
\overline{FI}= \overline{AI} - \overline{AF} =
5- \frac{\sqrt{2} }{2} \cdot \sqrt{3}
}\\$$

 

If the perpendicular of H is $$\small{\text{$H_0$}}$$ on line ED:

 

$$\mathbf{
\overline{BE} : \overline{HH_0} = 1 : \dfrac{2}{3}\qquad
\overline{ED} : \overline{EH_0} = 1 : \dfrac{2}{3}
}\\
\mathbf{
\overline{EH_0} = \dfrac{2}{3} \cdot ( \overline{AI} - \overline{AF} )\qquad \overline{HH_0} = \dfrac{2}{3} \cdot \overline{BE}
}\\$$

 

The area DEGHI = A:

 

$$\small{\text{
$
\mathbf{
2\cdot A =\dfrac{2}{3}\cdot (\overline{AI}-\overline{AF}) \cdot ( \dfrac{2}{3}\cdot \overline{BE} )+
\dfrac{1}{3}\cdot (\overline{AI}-\overline{AF}) \cdot ( \dfrac{2}{3}\cdot \overline{BE} - \overline{BF} )+\textcolor[rgb]{1,0,0}{2}\cdot
\dfrac{1}{3}\cdot (\overline{AI}-\overline{AF}) \cdot \overline{BF}
}
$}}\\\\
\small{\text{
$
\mathbf{
2\cdot A =(\overline{AI}-\overline{AF}) \cdot \left[
\dfrac{2}{3}\cdot\dfrac{2}{3}\cdot \sqrt{2}+
\dfrac{1}{3}\cdot ( \dfrac{1}{6}\cdot \sqrt{2} )+
\textcolor[rgb]{1,0,0}{2}\cdot
\dfrac{1}{3}\cdot \dfrac{\sqrt{2}}{2}
\right]
}
$}}\\\\
\small{\text{
$
\mathbf{
2\cdot A =(\overline{AI}-\overline{AF}) \cdot \dfrac{\sqrt{2}}{3} \cdot \left(
\dfrac{4}{3} + \dfrac{1}{6} + \dfrac{\textcolor[rgb]{1,0,0}{2}}{2}
\right)
}
$}}\\\\
\small{\text{
$
\mathbf{
2\cdot A =(\overline{AI}-\overline{AF}) \cdot \dfrac{\sqrt{2}}{3} \cdot \textcolor[rgb]{1,0,0}{\dfrac{5}{2}}
}
$}}\\\\
\small{\text{
$
\mathbf{
A =( \overline{AI}-\overline{AF}) \cdot \sqrt{2}\cdot\textcolor[rgb]{1,0,0}{\dfrac{5}{12}}
}
$}}\\\\
\small{\text{
$
\mathbf{
A =(5- \frac{\sqrt{2} }{2} \cdot \sqrt{3}) \cdot \sqrt{2}\cdot\textcolor[rgb]{1,0,0}{\dfrac{5}{12}}
}
$}}\\\\
\small{\text{
$
\mathbf{
A =( 5\cdot\sqrt{2} - \sqrt{3} ) \cdot \textcolor[rgb]{1,0,0}{\dfrac{5}{12}}
}
$}}\\\\
\small{\text{
$
\mathbf{
A =2.22459041846~\rm{cm^2}
}
$}}$$

 

P.S.

$$\small{\text{
$
\vec{EH}
\mathbf{
=\binom{ \overline{EH_0} }{ \overline{HH_0} }
=\binom{ 0 }{ \overline{BE} }
+ \lambda \binom{ \overline{AI}-\overline{AF} }
{ -\frac{ \overline{BE} } {2} }
= \mu \binom{ \overline{AI}-\overline{AF} }
{ \overline{BE} }\qquad
\mathbf{ \overline{EH_0} =\lambda ( \overline{AI}-\overline{AF} ) }\qquad
\mathbf{ \overline{HH_0} = \overline{BE} - \lambda \frac{ \overline{BE} } {2} }
}
$}}\\\\
\small{\text{
$
\begin{array}{lrcl}
&&\\
\lambda~?\\
&&\\
1.\\
& 0+\lambda( \overline{AI}-\overline{AF} ) &=& \mu ( \overline{AI}-\overline{AF} ) \\
& \lambda &=& \mu
&&\\
2.\\
&\overline{BE} - \lambda \frac{ \overline{BE} } {2} &=& \mu \overline{BE} \\\\
&\overline{BE} - \lambda \frac{ \overline{BE} } {2} &=& \lambda \overline{BE} \qquad | \qquad \mu = \lambda\\\\
&\overline{BE} - \lambda \frac{ \overline{BE} } {2} &=& \lambda \overline{BE} \qquad | \qquad : \overline{BE} \\\\
& 1 - \frac{ \lambda } {2} &=& \lambda \\\\
& \lambda + \frac{ \lambda } {2} &=& 1 \\\\
& \frac{ 3 } {2} \lambda &=& 1 \\\\
& \lambda &=& \frac{ 2 } {3} \\\\
\end{array}
$}}\\\\
\small{\text{
$
\mathbf{
\overline{EH_0} =\lambda ( \overline{AI}-\overline{AF} )
= \frac{2}{3} ( \overline{AI}-\overline{AF} )
}
$}}\\\\
\small{\text{
$
\mathbf{
\overline{HH_0} = \overline{BE} - \lambda \frac{ \overline{BE} } {2}
=\overline{BE} - \frac{2}{3} \frac{ \overline{BE} } {2}
= \frac{2}{3} \overline{BE}
}
$}}\\\\$$

 

heureka  May 29, 2015
 #1
avatar+20009 
+18
Best Answer

The area of the equilateral triangle ABE = sin600(cm2). Line segment AI = 5cm. BF = EF ; find the area DEGHI.

 

AI = 5 cm

 

$$\mathbf{
\sin{(60\ensurement{^{\circ}})} = \frac{1}{2} \cdot \sqrt{3}
}\\
\mathbf{
\overline{AB} = \overline{BE} = \sqrt{2} \qquad
\overline{BF} = \overline{EF} =\frac{ \sqrt{2}} {2}
}\\
\mathbf{
\overline{AF} = \sqrt{2} \cdot \sin{(60\ensurement{^{\circ}})} = \frac{\sqrt{2} }{2} \cdot \sqrt{3}
}\\
\mathbf{
\overline{FI}= \overline{AI} - \overline{AF} =
5- \frac{\sqrt{2} }{2} \cdot \sqrt{3}
}\\$$

 

If the perpendicular of H is $$\small{\text{$H_0$}}$$ on line ED:

 

$$\mathbf{
\overline{BE} : \overline{HH_0} = 1 : \dfrac{2}{3}\qquad
\overline{ED} : \overline{EH_0} = 1 : \dfrac{2}{3}
}\\
\mathbf{
\overline{EH_0} = \dfrac{2}{3} \cdot ( \overline{AI} - \overline{AF} )\qquad \overline{HH_0} = \dfrac{2}{3} \cdot \overline{BE}
}\\$$

 

The area DEGHI = A:

 

$$\small{\text{
$
\mathbf{
2\cdot A =\dfrac{2}{3}\cdot (\overline{AI}-\overline{AF}) \cdot ( \dfrac{2}{3}\cdot \overline{BE} )+
\dfrac{1}{3}\cdot (\overline{AI}-\overline{AF}) \cdot ( \dfrac{2}{3}\cdot \overline{BE} - \overline{BF} )+\textcolor[rgb]{1,0,0}{2}\cdot
\dfrac{1}{3}\cdot (\overline{AI}-\overline{AF}) \cdot \overline{BF}
}
$}}\\\\
\small{\text{
$
\mathbf{
2\cdot A =(\overline{AI}-\overline{AF}) \cdot \left[
\dfrac{2}{3}\cdot\dfrac{2}{3}\cdot \sqrt{2}+
\dfrac{1}{3}\cdot ( \dfrac{1}{6}\cdot \sqrt{2} )+
\textcolor[rgb]{1,0,0}{2}\cdot
\dfrac{1}{3}\cdot \dfrac{\sqrt{2}}{2}
\right]
}
$}}\\\\
\small{\text{
$
\mathbf{
2\cdot A =(\overline{AI}-\overline{AF}) \cdot \dfrac{\sqrt{2}}{3} \cdot \left(
\dfrac{4}{3} + \dfrac{1}{6} + \dfrac{\textcolor[rgb]{1,0,0}{2}}{2}
\right)
}
$}}\\\\
\small{\text{
$
\mathbf{
2\cdot A =(\overline{AI}-\overline{AF}) \cdot \dfrac{\sqrt{2}}{3} \cdot \textcolor[rgb]{1,0,0}{\dfrac{5}{2}}
}
$}}\\\\
\small{\text{
$
\mathbf{
A =( \overline{AI}-\overline{AF}) \cdot \sqrt{2}\cdot\textcolor[rgb]{1,0,0}{\dfrac{5}{12}}
}
$}}\\\\
\small{\text{
$
\mathbf{
A =(5- \frac{\sqrt{2} }{2} \cdot \sqrt{3}) \cdot \sqrt{2}\cdot\textcolor[rgb]{1,0,0}{\dfrac{5}{12}}
}
$}}\\\\
\small{\text{
$
\mathbf{
A =( 5\cdot\sqrt{2} - \sqrt{3} ) \cdot \textcolor[rgb]{1,0,0}{\dfrac{5}{12}}
}
$}}\\\\
\small{\text{
$
\mathbf{
A =2.22459041846~\rm{cm^2}
}
$}}$$

 

P.S.

$$\small{\text{
$
\vec{EH}
\mathbf{
=\binom{ \overline{EH_0} }{ \overline{HH_0} }
=\binom{ 0 }{ \overline{BE} }
+ \lambda \binom{ \overline{AI}-\overline{AF} }
{ -\frac{ \overline{BE} } {2} }
= \mu \binom{ \overline{AI}-\overline{AF} }
{ \overline{BE} }\qquad
\mathbf{ \overline{EH_0} =\lambda ( \overline{AI}-\overline{AF} ) }\qquad
\mathbf{ \overline{HH_0} = \overline{BE} - \lambda \frac{ \overline{BE} } {2} }
}
$}}\\\\
\small{\text{
$
\begin{array}{lrcl}
&&\\
\lambda~?\\
&&\\
1.\\
& 0+\lambda( \overline{AI}-\overline{AF} ) &=& \mu ( \overline{AI}-\overline{AF} ) \\
& \lambda &=& \mu
&&\\
2.\\
&\overline{BE} - \lambda \frac{ \overline{BE} } {2} &=& \mu \overline{BE} \\\\
&\overline{BE} - \lambda \frac{ \overline{BE} } {2} &=& \lambda \overline{BE} \qquad | \qquad \mu = \lambda\\\\
&\overline{BE} - \lambda \frac{ \overline{BE} } {2} &=& \lambda \overline{BE} \qquad | \qquad : \overline{BE} \\\\
& 1 - \frac{ \lambda } {2} &=& \lambda \\\\
& \lambda + \frac{ \lambda } {2} &=& 1 \\\\
& \frac{ 3 } {2} \lambda &=& 1 \\\\
& \lambda &=& \frac{ 2 } {3} \\\\
\end{array}
$}}\\\\
\small{\text{
$
\mathbf{
\overline{EH_0} =\lambda ( \overline{AI}-\overline{AF} )
= \frac{2}{3} ( \overline{AI}-\overline{AF} )
}
$}}\\\\
\small{\text{
$
\mathbf{
\overline{HH_0} = \overline{BE} - \lambda \frac{ \overline{BE} } {2}
=\overline{BE} - \frac{2}{3} \frac{ \overline{BE} } {2}
= \frac{2}{3} \overline{BE}
}
$}}\\\\$$

 

heureka  May 29, 2015
 #2
avatar+1068 
0

I'm too tired; I'll work on this one tomorrow; I'm going to Image result for sleep

 

@heureka:/  This time your numbers are correct! I came up with the same answer --with a little help from you. Thanks for showing me how to find a side of the equilateral triangle when only the area is known!

I guess..., I can go back to (see above image) 

civonamzuk  May 30, 2015
 #3
avatar+20009 
+5
heureka  May 30, 2015
 #4
avatar+20009 
+13

how to find a side of the equilateral triangle when only the area A is known!

AE = AB = BE ( equilateral triangle )

P.S.

$$\mathbf{
2A = \overline{AB}\cdot \overline{BE}\cdot \sin{(60\ensurement{^{\circ}})}
}\\\\
\small{\text{
\begin{array}{rcl}
2A &=& \overline{AB}\cdot \overline{BE}\cdot \sin{(60\ensurement{^{\circ}})} \qquad | \qquad \overline{AB} = \overline{BE}\\\\
2A &=& \overline{BE}\cdot \overline{BE}\cdot \sin{(60\ensurement{^{\circ}})}\\\\
2A &=& \overline{BE}^2\cdot \sin{(60\ensurement{^{\circ}})}
\qquad | \qquad A = \sin{ (60\ensurement{^{\circ}}) } \\\\
2 \cdot \sin{ (60\ensurement{^{\circ}}) } &=& \overline{BE}^2\cdot \sin{(60\ensurement{^{\circ}})} \\\\
2 &=& \overline{BE}^2 \\\\
\overline{BE}^2 &=& 2 \qquad | \qquad \sqrt{} \\\\
\overline{BE} &=& \sqrt{2}
\end{array}
$
$}}$$

heureka  May 30, 2015
 #5
avatar+519 
+8

fiora  May 30, 2015
 #6
avatar+519 
+13

fiora  May 30, 2015

16 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.