We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
859
1
avatar+474 

The digits $1,2,3,4$ and $5$ can be arranged to form many different $5$-digit positive integers with five distinct digits. In how many such integers is the digit $1$ to the left of the digit $2$?

 Sep 7, 2017

Best Answer 

 #1
avatar+22174 
+1

The digits 1,2,3,4 and 5 can be arranged to form many different 5-digit positive integers with five distinct digits.
 In how many such integers is the digit 1 to the left of the digit 2?

 

\(\begin{array}{|r|r|r|r|r|r|} \hline & & 1 \text{ left } 2& 1 \text{ left } 2& 1 \text{ left } 2& 1 \text{ left } 2 \\ \hline n & \text{permutation} & \text{ distance }0 & \text{ distance }1 & \text{ distance }2 & \text{ distance }3 \\ \hline 1. & 12345& 0 \\ 2. & 12354& 0 \\ 3. & 12435& 0 \\ 4. & 12453& 0 \\ 5. & 12543& 0 \\ 6. & 12534& 0 \\ 7. & 13245 && 1 \\ 8. & 13254 && 1 \\ 9. & 13425 &&& 2 \\ 10. & 13452 &&&& 3 \\ 11. & 13542 &&&& 3\\ 12. & 13524 &&& 2 \\ 13. & 14325 &&& 2 \\ 14. & 14352 &&&& 3 \\ 15. & 14235 && 1 \\ 16. & 14253 && 1 \\ 17. & 14523 &&& 2 \\ 18. & 14532 &&&& 3 \\ 19. & 15342 &&&& 3 \\ 20. & 15324 &&& 2 \\ 21. & 15432 &&&& 3 \\ 22. & 15423 &&& 2 \\ 23. & 15243 && 1 \\ 24. & 15234 && 1 \\ 25. & 21345 \\ 26. & 21354 \\ 27. & 21435 \\ 28. & 21453 \\ 29. & 21543 \\ 30. & 21534 \\ 31. & 23145 \\ 32. & 23154 \\ 33. & 23415 \\ 34. & 23451 \\ 35. & 23541 \\ 36. & 23514 \\ 37. & 24315 \\ 38. & 24351 \\ 39. & 24135 \\ 40. & 24153 \\ 41. & 24513 \\ 42. & 24531 \\ 43. & 25341 \\ 44. & 25314 \\ 45. & 25431 \\ 46. & 25413 \\ 47. & 25143 \\ 48. & 25134 \\ 49. & 32145 \\ 50. & 32154 \\ 51. & 32415 \\ 52. & 32451 \\ 53. & 32541 \\ 54. & 32514 \\ 55. & 31245 &0 \\ 56. & 31254 &0 \\ 57. & 31425 && 1 \\ 58. & 31452 &&& 2 \\ 59. & 31542 &&& 2 \\ 60. & 31524 && 1 \\ 61. & 34125 &0 \\ 62. & 34152 && 1 \\ 63. & 34215 \\ 64. & 34251 \\ 65. & 34521 \\ 66. & 34512 &0 \\ 67. & 35142 && 1 \\ 68. & 35124 &0 \\ 69. & 35412 &0 \\ 70. & 35421 \\ 71. & 35241 \\ 72. & 35214 \\ 73. & 42315 \\ 74. & 42351 \\ 75. & 42135 \\ 76. & 42153 \\ 77. & 42513 \\ 78. & 42531 \\ 79. & 43215 \\ 80. & 43251 \\ 81. & 43125 &0 \\ 82. & 43152 && 1 \\ 83. & 43512 &0 \\ 84. & 43521 \\ 85. & 41325 && 1 \\ 86. & 41352 &&& 2 \\ 87. & 41235 &0 \\ 88. & 41253 &0 \\ 89. & 41523 && 1 \\ 90. & 41532 &&& 2 \\ 91. & 45312 &0 \\ 92. & 45321 \\ 93. & 45132 && 1 \\ 94. & 45123 &0 \\ 95. & 45213 \\ 96. & 45231 \\ 97. & 52341 \\ 98. & 52314 \\ 99. & 52431 \\ 100. & 52413 \\ 101. & 52143 \\ 102. & 52134 \\ 103. & 53241 \\ 104. & 53214 \\ 105. & 53421 \\ 106. & 53412 &0 \\ 107. & 53142 && 1 \\ 108. & 53124 &0 \\ 109. & 54321 \\ 110. & 54312 &0 \\ 111. & 54231 \\ 112. & 54213 \\ 113. & 54123 &0 \\ 114. & 54132 && 1 \\ 115. & 51342 &&& 2 \\ 116. & 51324 && 1 \\ 117. & 51432 &&& 2 \\ 118. & 51423 && 1 \\ 119. & 51243 &0 \\ 120. & 51234 &0 \\ \hline sum & & 24 & 18& 12 & 6 \\ \hline \end{array}\)

 

laugh

 Sep 7, 2017
 #1
avatar+22174 
+1
Best Answer

The digits 1,2,3,4 and 5 can be arranged to form many different 5-digit positive integers with five distinct digits.
 In how many such integers is the digit 1 to the left of the digit 2?

 

\(\begin{array}{|r|r|r|r|r|r|} \hline & & 1 \text{ left } 2& 1 \text{ left } 2& 1 \text{ left } 2& 1 \text{ left } 2 \\ \hline n & \text{permutation} & \text{ distance }0 & \text{ distance }1 & \text{ distance }2 & \text{ distance }3 \\ \hline 1. & 12345& 0 \\ 2. & 12354& 0 \\ 3. & 12435& 0 \\ 4. & 12453& 0 \\ 5. & 12543& 0 \\ 6. & 12534& 0 \\ 7. & 13245 && 1 \\ 8. & 13254 && 1 \\ 9. & 13425 &&& 2 \\ 10. & 13452 &&&& 3 \\ 11. & 13542 &&&& 3\\ 12. & 13524 &&& 2 \\ 13. & 14325 &&& 2 \\ 14. & 14352 &&&& 3 \\ 15. & 14235 && 1 \\ 16. & 14253 && 1 \\ 17. & 14523 &&& 2 \\ 18. & 14532 &&&& 3 \\ 19. & 15342 &&&& 3 \\ 20. & 15324 &&& 2 \\ 21. & 15432 &&&& 3 \\ 22. & 15423 &&& 2 \\ 23. & 15243 && 1 \\ 24. & 15234 && 1 \\ 25. & 21345 \\ 26. & 21354 \\ 27. & 21435 \\ 28. & 21453 \\ 29. & 21543 \\ 30. & 21534 \\ 31. & 23145 \\ 32. & 23154 \\ 33. & 23415 \\ 34. & 23451 \\ 35. & 23541 \\ 36. & 23514 \\ 37. & 24315 \\ 38. & 24351 \\ 39. & 24135 \\ 40. & 24153 \\ 41. & 24513 \\ 42. & 24531 \\ 43. & 25341 \\ 44. & 25314 \\ 45. & 25431 \\ 46. & 25413 \\ 47. & 25143 \\ 48. & 25134 \\ 49. & 32145 \\ 50. & 32154 \\ 51. & 32415 \\ 52. & 32451 \\ 53. & 32541 \\ 54. & 32514 \\ 55. & 31245 &0 \\ 56. & 31254 &0 \\ 57. & 31425 && 1 \\ 58. & 31452 &&& 2 \\ 59. & 31542 &&& 2 \\ 60. & 31524 && 1 \\ 61. & 34125 &0 \\ 62. & 34152 && 1 \\ 63. & 34215 \\ 64. & 34251 \\ 65. & 34521 \\ 66. & 34512 &0 \\ 67. & 35142 && 1 \\ 68. & 35124 &0 \\ 69. & 35412 &0 \\ 70. & 35421 \\ 71. & 35241 \\ 72. & 35214 \\ 73. & 42315 \\ 74. & 42351 \\ 75. & 42135 \\ 76. & 42153 \\ 77. & 42513 \\ 78. & 42531 \\ 79. & 43215 \\ 80. & 43251 \\ 81. & 43125 &0 \\ 82. & 43152 && 1 \\ 83. & 43512 &0 \\ 84. & 43521 \\ 85. & 41325 && 1 \\ 86. & 41352 &&& 2 \\ 87. & 41235 &0 \\ 88. & 41253 &0 \\ 89. & 41523 && 1 \\ 90. & 41532 &&& 2 \\ 91. & 45312 &0 \\ 92. & 45321 \\ 93. & 45132 && 1 \\ 94. & 45123 &0 \\ 95. & 45213 \\ 96. & 45231 \\ 97. & 52341 \\ 98. & 52314 \\ 99. & 52431 \\ 100. & 52413 \\ 101. & 52143 \\ 102. & 52134 \\ 103. & 53241 \\ 104. & 53214 \\ 105. & 53421 \\ 106. & 53412 &0 \\ 107. & 53142 && 1 \\ 108. & 53124 &0 \\ 109. & 54321 \\ 110. & 54312 &0 \\ 111. & 54231 \\ 112. & 54213 \\ 113. & 54123 &0 \\ 114. & 54132 && 1 \\ 115. & 51342 &&& 2 \\ 116. & 51324 && 1 \\ 117. & 51432 &&& 2 \\ 118. & 51423 && 1 \\ 119. & 51243 &0 \\ 120. & 51234 &0 \\ \hline sum & & 24 & 18& 12 & 6 \\ \hline \end{array}\)

 

laugh

heureka Sep 7, 2017

23 Online Users

avatar