+0

# The digits $1,2,3,4$ and $5$ can be arranged to form many different $5$-digit positive integers with five distinct digits. In how many such

+1
308
1
+376

The digits $1,2,3,4$ and $5$ can be arranged to form many different $5$-digit positive integers with five distinct digits. In how many such integers is the digit $1$ to the left of the digit $2$?

RektTheNoob  Sep 7, 2017

#1
+19205
+1

The digits 1,2,3,4 and 5 can be arranged to form many different 5-digit positive integers with five distinct digits.
In how many such integers is the digit 1 to the left of the digit 2?

$$\begin{array}{|r|r|r|r|r|r|} \hline & & 1 \text{ left } 2& 1 \text{ left } 2& 1 \text{ left } 2& 1 \text{ left } 2 \\ \hline n & \text{permutation} & \text{ distance }0 & \text{ distance }1 & \text{ distance }2 & \text{ distance }3 \\ \hline 1. & 12345& 0 \\ 2. & 12354& 0 \\ 3. & 12435& 0 \\ 4. & 12453& 0 \\ 5. & 12543& 0 \\ 6. & 12534& 0 \\ 7. & 13245 && 1 \\ 8. & 13254 && 1 \\ 9. & 13425 &&& 2 \\ 10. & 13452 &&&& 3 \\ 11. & 13542 &&&& 3\\ 12. & 13524 &&& 2 \\ 13. & 14325 &&& 2 \\ 14. & 14352 &&&& 3 \\ 15. & 14235 && 1 \\ 16. & 14253 && 1 \\ 17. & 14523 &&& 2 \\ 18. & 14532 &&&& 3 \\ 19. & 15342 &&&& 3 \\ 20. & 15324 &&& 2 \\ 21. & 15432 &&&& 3 \\ 22. & 15423 &&& 2 \\ 23. & 15243 && 1 \\ 24. & 15234 && 1 \\ 25. & 21345 \\ 26. & 21354 \\ 27. & 21435 \\ 28. & 21453 \\ 29. & 21543 \\ 30. & 21534 \\ 31. & 23145 \\ 32. & 23154 \\ 33. & 23415 \\ 34. & 23451 \\ 35. & 23541 \\ 36. & 23514 \\ 37. & 24315 \\ 38. & 24351 \\ 39. & 24135 \\ 40. & 24153 \\ 41. & 24513 \\ 42. & 24531 \\ 43. & 25341 \\ 44. & 25314 \\ 45. & 25431 \\ 46. & 25413 \\ 47. & 25143 \\ 48. & 25134 \\ 49. & 32145 \\ 50. & 32154 \\ 51. & 32415 \\ 52. & 32451 \\ 53. & 32541 \\ 54. & 32514 \\ 55. & 31245 &0 \\ 56. & 31254 &0 \\ 57. & 31425 && 1 \\ 58. & 31452 &&& 2 \\ 59. & 31542 &&& 2 \\ 60. & 31524 && 1 \\ 61. & 34125 &0 \\ 62. & 34152 && 1 \\ 63. & 34215 \\ 64. & 34251 \\ 65. & 34521 \\ 66. & 34512 &0 \\ 67. & 35142 && 1 \\ 68. & 35124 &0 \\ 69. & 35412 &0 \\ 70. & 35421 \\ 71. & 35241 \\ 72. & 35214 \\ 73. & 42315 \\ 74. & 42351 \\ 75. & 42135 \\ 76. & 42153 \\ 77. & 42513 \\ 78. & 42531 \\ 79. & 43215 \\ 80. & 43251 \\ 81. & 43125 &0 \\ 82. & 43152 && 1 \\ 83. & 43512 &0 \\ 84. & 43521 \\ 85. & 41325 && 1 \\ 86. & 41352 &&& 2 \\ 87. & 41235 &0 \\ 88. & 41253 &0 \\ 89. & 41523 && 1 \\ 90. & 41532 &&& 2 \\ 91. & 45312 &0 \\ 92. & 45321 \\ 93. & 45132 && 1 \\ 94. & 45123 &0 \\ 95. & 45213 \\ 96. & 45231 \\ 97. & 52341 \\ 98. & 52314 \\ 99. & 52431 \\ 100. & 52413 \\ 101. & 52143 \\ 102. & 52134 \\ 103. & 53241 \\ 104. & 53214 \\ 105. & 53421 \\ 106. & 53412 &0 \\ 107. & 53142 && 1 \\ 108. & 53124 &0 \\ 109. & 54321 \\ 110. & 54312 &0 \\ 111. & 54231 \\ 112. & 54213 \\ 113. & 54123 &0 \\ 114. & 54132 && 1 \\ 115. & 51342 &&& 2 \\ 116. & 51324 && 1 \\ 117. & 51432 &&& 2 \\ 118. & 51423 && 1 \\ 119. & 51243 &0 \\ 120. & 51234 &0 \\ \hline sum & & 24 & 18& 12 & 6 \\ \hline \end{array}$$

heureka  Sep 7, 2017
Sort:

#1
+19205
+1

The digits 1,2,3,4 and 5 can be arranged to form many different 5-digit positive integers with five distinct digits.
In how many such integers is the digit 1 to the left of the digit 2?

$$\begin{array}{|r|r|r|r|r|r|} \hline & & 1 \text{ left } 2& 1 \text{ left } 2& 1 \text{ left } 2& 1 \text{ left } 2 \\ \hline n & \text{permutation} & \text{ distance }0 & \text{ distance }1 & \text{ distance }2 & \text{ distance }3 \\ \hline 1. & 12345& 0 \\ 2. & 12354& 0 \\ 3. & 12435& 0 \\ 4. & 12453& 0 \\ 5. & 12543& 0 \\ 6. & 12534& 0 \\ 7. & 13245 && 1 \\ 8. & 13254 && 1 \\ 9. & 13425 &&& 2 \\ 10. & 13452 &&&& 3 \\ 11. & 13542 &&&& 3\\ 12. & 13524 &&& 2 \\ 13. & 14325 &&& 2 \\ 14. & 14352 &&&& 3 \\ 15. & 14235 && 1 \\ 16. & 14253 && 1 \\ 17. & 14523 &&& 2 \\ 18. & 14532 &&&& 3 \\ 19. & 15342 &&&& 3 \\ 20. & 15324 &&& 2 \\ 21. & 15432 &&&& 3 \\ 22. & 15423 &&& 2 \\ 23. & 15243 && 1 \\ 24. & 15234 && 1 \\ 25. & 21345 \\ 26. & 21354 \\ 27. & 21435 \\ 28. & 21453 \\ 29. & 21543 \\ 30. & 21534 \\ 31. & 23145 \\ 32. & 23154 \\ 33. & 23415 \\ 34. & 23451 \\ 35. & 23541 \\ 36. & 23514 \\ 37. & 24315 \\ 38. & 24351 \\ 39. & 24135 \\ 40. & 24153 \\ 41. & 24513 \\ 42. & 24531 \\ 43. & 25341 \\ 44. & 25314 \\ 45. & 25431 \\ 46. & 25413 \\ 47. & 25143 \\ 48. & 25134 \\ 49. & 32145 \\ 50. & 32154 \\ 51. & 32415 \\ 52. & 32451 \\ 53. & 32541 \\ 54. & 32514 \\ 55. & 31245 &0 \\ 56. & 31254 &0 \\ 57. & 31425 && 1 \\ 58. & 31452 &&& 2 \\ 59. & 31542 &&& 2 \\ 60. & 31524 && 1 \\ 61. & 34125 &0 \\ 62. & 34152 && 1 \\ 63. & 34215 \\ 64. & 34251 \\ 65. & 34521 \\ 66. & 34512 &0 \\ 67. & 35142 && 1 \\ 68. & 35124 &0 \\ 69. & 35412 &0 \\ 70. & 35421 \\ 71. & 35241 \\ 72. & 35214 \\ 73. & 42315 \\ 74. & 42351 \\ 75. & 42135 \\ 76. & 42153 \\ 77. & 42513 \\ 78. & 42531 \\ 79. & 43215 \\ 80. & 43251 \\ 81. & 43125 &0 \\ 82. & 43152 && 1 \\ 83. & 43512 &0 \\ 84. & 43521 \\ 85. & 41325 && 1 \\ 86. & 41352 &&& 2 \\ 87. & 41235 &0 \\ 88. & 41253 &0 \\ 89. & 41523 && 1 \\ 90. & 41532 &&& 2 \\ 91. & 45312 &0 \\ 92. & 45321 \\ 93. & 45132 && 1 \\ 94. & 45123 &0 \\ 95. & 45213 \\ 96. & 45231 \\ 97. & 52341 \\ 98. & 52314 \\ 99. & 52431 \\ 100. & 52413 \\ 101. & 52143 \\ 102. & 52134 \\ 103. & 53241 \\ 104. & 53214 \\ 105. & 53421 \\ 106. & 53412 &0 \\ 107. & 53142 && 1 \\ 108. & 53124 &0 \\ 109. & 54321 \\ 110. & 54312 &0 \\ 111. & 54231 \\ 112. & 54213 \\ 113. & 54123 &0 \\ 114. & 54132 && 1 \\ 115. & 51342 &&& 2 \\ 116. & 51324 && 1 \\ 117. & 51432 &&& 2 \\ 118. & 51423 && 1 \\ 119. & 51243 &0 \\ 120. & 51234 &0 \\ \hline sum & & 24 & 18& 12 & 6 \\ \hline \end{array}$$

heureka  Sep 7, 2017

### 27 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details