The dotted diagonal AC (Fig. 42) has the length of twice the radius. Find the area of the emblem only.
Radius (r) = 1
The dotted diagonal AC (Fig. 42) has the length of twice the radius. Find the area of the emblem only.
$$\\A_{circle}=\pi r^2 \\
A_{square}=(r \sqrt{2})^2=2r^2\\
A_{goblet}=\frac{ A_{circle} - A_{square} }{4} = \frac{\pi r^2 - 2r^2}{4}\\\\
A = 4\cdot
\left[
A_{quadrant}-2\cdot A_{goblet}- A_{triangle}
\right]\\\\
A = 4\cdot
\left[
\frac{\pi r^2 }{4}
-2\cdot \left( \frac{\pi r^2 - 2r^2}{4} \right)
- \frac{ \left( r\sqrt{2}-r \right)^2 }{2}
\right]\\\\
A = \pi r^2 -2\cdot \left(\pi r^2 - 2r^2\right)
- 2\cdot \left( r\sqrt{2}-r \right)^2\\\\
A = \pi r^2 -2\pi r^2 + 4r^2
- 2\cdot \left( r\sqrt{2}-r \right)^2\\\\
A = \pi r^2 -2\pi r^2 + 4r^2
- 2\cdot \left(2r^2-2\sqrt{2}r^2 +r^2 \right)\\\\
A = \pi r^2 -2\pi r^2 + 4r^2
- 4r^2 +4\sqrt{2}r^2-2r^2\\\\
A = -\pi r^2 +4\sqrt{2}r^2-2r^2\\\\
A=r^2\cdot (4\sqrt{2}-2-\pi)$$
The dotted diagonal AC (Fig. 42) has the length of twice the radius. Find the area of the emblem only.
$$\\A_{circle}=\pi r^2 \\
A_{square}=(r \sqrt{2})^2=2r^2\\
A_{goblet}=\frac{ A_{circle} - A_{square} }{4} = \frac{\pi r^2 - 2r^2}{4}\\\\
A = 4\cdot
\left[
A_{quadrant}-2\cdot A_{goblet}- A_{triangle}
\right]\\\\
A = 4\cdot
\left[
\frac{\pi r^2 }{4}
-2\cdot \left( \frac{\pi r^2 - 2r^2}{4} \right)
- \frac{ \left( r\sqrt{2}-r \right)^2 }{2}
\right]\\\\
A = \pi r^2 -2\cdot \left(\pi r^2 - 2r^2\right)
- 2\cdot \left( r\sqrt{2}-r \right)^2\\\\
A = \pi r^2 -2\pi r^2 + 4r^2
- 2\cdot \left( r\sqrt{2}-r \right)^2\\\\
A = \pi r^2 -2\pi r^2 + 4r^2
- 2\cdot \left(2r^2-2\sqrt{2}r^2 +r^2 \right)\\\\
A = \pi r^2 -2\pi r^2 + 4r^2
- 4r^2 +4\sqrt{2}r^2-2r^2\\\\
A = -\pi r^2 +4\sqrt{2}r^2-2r^2\\\\
A=r^2\cdot (4\sqrt{2}-2-\pi)$$
The dotted diagonal AC (Fig. 42) has the length of twice the radius. Find the area of the emblem only.
Radius (r) = 1
AC = 2r r = 1
Area of the square is: (sqrt(2))2 = 2.000u2
Triangles: (lkC + oAf) = (sqrt(2) -1)2 = 0.171572875253809862u2
Half circle area is: r2pi/2 = 1.5707963267948966u2
(2.000u2 - 1.570796326794896u2 - 0.17157287525380986u2)*2= 0.515261595902587u2