We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+2
90
6
avatar+196 

The four-digit number \(25AB\) is divisible by nine, with \(A\) the tens digit and \(B\) the units digit. How many such four-digit numbers could \(25AB\) represent?

 Oct 4, 2019
 #1
avatar+196 
+1

For AB I got 11, 02, 20, 29, 38, 47, 56, 65, 74, 83, and 92. I'm not sure if that's all of them.

 Oct 4, 2019
 #2
avatar+104969 
+2

25AB

 

The sum of the digits must be a multiple of 9......so.....

 

2 + 5  +  A  + B  =   9M

 

A + B   =  9M - 7

 

If  M =  1                    M  =  2                M  = 3

A + B  =  2                A + B  =  11         A + B  = 20 

A , B  =                     A , B =                 No possibilities  for A, B when  M > 2

0, 2                           2, 9

and the reverse        3, 8

                                 4, 7

                                 5, 6

                                 and the reverses

 

So....by my count.....we have 5(2) =  10 such numbers

 

 

cool cool cool

 Oct 4, 2019
 #3
avatar+104969 
+2

If A,B  can be the same integers....you are correct, HSM  !!!

 

[ I assumed that they must be unique ]

 

Whatever.....our answers only differ by 1, so  it probably depends upon our assumptions  ....LOL!!!

 

 

 

 

cool cool cool

CPhill  Oct 4, 2019
 #4
avatar+196 
+2

I don't think you counted the 11 case. 2511 would also work because 2+5+1+1=9

hellospeedmind  Oct 4, 2019
 #5
avatar+196 
+2

Ok. Thank you for your answer

hellospeedmind  Oct 4, 2019
 #6
avatar+104969 
0

Yep...if A,B  can be the same integers, you are correct

 

[ I assumed that they had to be different ]

 

 

cool cool cool

CPhill  Oct 4, 2019

15 Online Users

avatar