+0  
 
+2
432
2
avatar+598 

The function\(f(x) = \frac{cx}{2x+3}\)satisfies $f(f(x))=x$ for all real numbers \($x\ne -\frac 32$\). Find $c$.

michaelcai  Dec 5, 2017
 #1
avatar+598 
+2

c=-3

michaelcai  Dec 5, 2017
 #2
avatar+90053 
+2

f (f(x) )   =  

 

c  [ cx / (2x + 3) ]

________________         =     x

2 [ cx / (2x + 3)] + 3

 

[c^2x] / (2x + 3) ]

___________________     =    x

[ 2cx + 6x + 9] / (2x + 3)

 

c^2x    =  [2cx + 6x + 9 ] * x

 

c^2x  = 2cx^2 + 6x^2 + 9x

 

(2c + 6)x^2 + (9 - c^2)x  =  0

 

For this to be 0  for all  real x {except x = -3/2}   we need both

 

2c + 6  = 0       and    9 - c^2  = 0

 

So  using the second    c  = 3   or  c = -3

 

But when  c  =  3,   2c + 6  =  12

 

But  when  c   = -3      both  2c + 6  and 9 - c^2    will = 0

 

So....  c  = - 3 

 

 

cool cool cool

CPhill  Dec 5, 2017

10 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.