+0  
 
+2
3901
2
avatar+619 

The function\(f(x) = \frac{cx}{2x+3}\)satisfies $f(f(x))=x$ for all real numbers \($x\ne -\frac 32$\). Find $c$.

 Dec 5, 2017
 #1
avatar+619 
+1

c=-3

 Dec 5, 2017
 #2
avatar+129852 
+2

f (f(x) )   =  

 

c  [ cx / (2x + 3) ]

________________         =     x

2 [ cx / (2x + 3)] + 3

 

[c^2x] / (2x + 3) ]

___________________     =    x

[ 2cx + 6x + 9] / (2x + 3)

 

c^2x    =  [2cx + 6x + 9 ] * x

 

c^2x  = 2cx^2 + 6x^2 + 9x

 

(2c + 6)x^2 + (9 - c^2)x  =  0

 

For this to be 0  for all  real x {except x = -3/2}   we need both

 

2c + 6  = 0       and    9 - c^2  = 0

 

So  using the second    c  = 3   or  c = -3

 

But when  c  =  3,   2c + 6  =  12

 

But  when  c   = -3      both  2c + 6  and 9 - c^2    will = 0

 

So....  c  = - 3 

 

 

cool cool cool

 Dec 5, 2017

3 Online Users

avatar