+0  
 
+2
38
2
avatar+497 

The function\(f(x) = \frac{cx}{2x+3}\)satisfies $f(f(x))=x$ for all real numbers \($x\ne -\frac 32$\). Find $c$.

 
michaelcai  Dec 5, 2017
Sort: 

2+0 Answers

 #1
avatar+497 
+1

c=-3

 
michaelcai  Dec 5, 2017
 #2
avatar+79819 
+2

f (f(x) )   =  

 

c  [ cx / (2x + 3) ]

________________         =     x

2 [ cx / (2x + 3)] + 3

 

[c^2x] / (2x + 3) ]

___________________     =    x

[ 2cx + 6x + 9] / (2x + 3)

 

c^2x    =  [2cx + 6x + 9 ] * x

 

c^2x  = 2cx^2 + 6x^2 + 9x

 

(2c + 6)x^2 + (9 - c^2)x  =  0

 

For this to be 0  for all  real x {except x = -3/2}   we need both

 

2c + 6  = 0       and    9 - c^2  = 0

 

So  using the second    c  = 3   or  c = -3

 

But when  c  =  3,   2c + 6  =  12

 

But  when  c   = -3      both  2c + 6  and 9 - c^2    will = 0

 

So....  c  = - 3 

 

 

cool cool cool

 
CPhill  Dec 5, 2017

12 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details