+0  
 
+2
549
2
avatar+598 

The function\(f(x) = \frac{cx}{2x+3}\)satisfies $f(f(x))=x$ for all real numbers \($x\ne -\frac 32$\). Find $c$.

 Dec 5, 2017
 #1
avatar+598 
+2

c=-3

 Dec 5, 2017
 #2
avatar+94295 
+2

f (f(x) )   =  

 

c  [ cx / (2x + 3) ]

________________         =     x

2 [ cx / (2x + 3)] + 3

 

[c^2x] / (2x + 3) ]

___________________     =    x

[ 2cx + 6x + 9] / (2x + 3)

 

c^2x    =  [2cx + 6x + 9 ] * x

 

c^2x  = 2cx^2 + 6x^2 + 9x

 

(2c + 6)x^2 + (9 - c^2)x  =  0

 

For this to be 0  for all  real x {except x = -3/2}   we need both

 

2c + 6  = 0       and    9 - c^2  = 0

 

So  using the second    c  = 3   or  c = -3

 

But when  c  =  3,   2c + 6  =  12

 

But  when  c   = -3      both  2c + 6  and 9 - c^2    will = 0

 

So....  c  = - 3 

 

 

cool cool cool

 Dec 5, 2017

37 Online Users

avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.