The function f(x) is the height of an object x seconds after it is thrown in the air. The object reaches its maximum height in 2 s, and hits the ground at 5 s.
What is the practical domain for the function?
whole numbers
all real numbers
[0,5]
(0,5)
What is (f+g)(x)?
f(x) = 8x2+16x+6
g(x)=x3−3x2−9
x3+5x2+16x+3
x3+8x2+16x−3
x3+5x2+16x−3
2x3+5x2+16x−3
What is (f⋅g)(x)
f(x)=x4−9
g(x)=x3+9
x7+9x4+9x3+81
x7+9x4−9x3−81
x7−9x4−9x3−81
x7−9x4+9x3+81
[0,5]
What is (f+g)(x)?
f(x) = 8x^2+16x+6
g(x)=x^3−3x^2−9
f + g = 8x^2 + 16x + 6 + x^3 - 3x^2 - 9 = x^3 + 5x^2 + 16x - 3
What is (f⋅g)(x)
f(x)=x^4−9
g(x)=x^3+9
f * g =
(x^4 - 9( (x^3 + 9) use the distributive property
x^4 (x^3) + x^4(9) + (-9)(x^3) + (-9)(9)
x^7 + 9x^4 - 9x^3 - 81