+0  
 
0
48
1
avatar+454 

The graph of the parametric equations
\(\begin{align*} x&=\cos t,\\ y&=\sin t, \end{align*}\)
meets the graph of the parametric equations
\(\begin{align*} x &= 2+ 4\cos s,\\ y &= 3+4\sin s, \end{align*}\)
at two points. Find the slope of the line between these two points.

RektTheNoob  Nov 28, 2018
 #1
avatar+20680 
+6

The graph of the parametric equations
\(\begin{align*} x&=\cos t,\\ y&=\sin t, \end{align*}\)
meets the graph of the parametric equations
\(\begin{align*} x &= 2+ 4\cos s,\\ y &= 3+4\sin s, \end{align*}\)
at two points.
Find the slope of the line between these two points.

 

\( \text{circle 1:} \\ \begin{array}{|rcll|} \hline x &=& \cos(t) \\ y &=& \sin(t) \\ \hline x^2+y^2 &=& \cos^2(t) + \sin^2(t) \\ \mathbf{x^2+y^2} & \mathbf{=} & \mathbf{1} \\ \hline \end{array}\)

 

\(\text{circle 2:} \\ \begin{array}{|rcll|} \hline x &=& 2+4\cos(t) \quad \text{ or } \quad 4\cos(t) = x-2 \\ y &=& 3+4\sin(t) \quad \text{ or } \quad 4\sin(t) = y-3 \\ \hline x^2+y^2 &=& \Big( 2+4\cos(t) \Big)^2 + \Big( 3+4\sin(t) \Big)^2 \\ x^2+y^2 &=& 4+16\cos(t)+16\cos^2(t) + 9 + 24\sin(t) + 16\sin^2(t) \\ x^2+y^2 &=& 13+16\cos(t)+ 24\sin(t) + 16\Big(\cos^2(t) + \sin^2(t) \Big) \\ x^2+y^2 &=& 13+16\cos(t)+ 24\sin(t) + 16 \\ x^2+y^2 &=& 29+16\cos(t)+ 24\sin(t) \\ x^2+y^2 &=& 29+4\cdot4\cos(t)+ 6\cdot 4\sin(t) \\ x^2+y^2 &=& 29+4\cdot (x-2)+ 6\cdot (y-3) \\ x^2+y^2 &=& 29+4x-8+6y-18 \\ \mathbf{x^2+y^2} & \mathbf{=} & \mathbf{3+4x +6y} \\ \hline \end{array} \)

 

\(\text{intersection between the two circles:} \\ \begin{array}{|rcll|} \hline \text{circle 2: }~\mathbf{x^2+y^2} & \mathbf{=} & \mathbf{3+4x +6y} \quad &| \quad \text{circle 1: }~ \mathbf{x^2+y^2= 1} \\ 1 &=& 3+4x +6y \\ 6y+4x+3 &=& 1 \\ 6y &=& -4x-3 +1 \\ 6y &=& -4x-2 \\\\ y &=& \dfrac{-4x-2}{6} \\\\ y &=& -\dfrac{4}{6}x -\dfrac{2}{6} \\\\ y &=& -\dfrac{2}{3}x -\dfrac{1}{3} \\ \hline \end{array} \)

 

\(\text{the line between these two points:} \\ \begin{array}{|rcll|} \hline \mathbf{ y } & \mathbf{=} & \mathbf{ \underbrace{-\dfrac{2}{3}}_{\text{slope}}x -\dfrac{1}{3} } \\ \hline \end{array} \)

 

The slope of the line between these two points is \(\mathbf{-\dfrac{2}{3}}\).

 

 

laugh

heureka  Nov 28, 2018
edited by heureka  Nov 28, 2018

6 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.