+0

# the graph of y = sin x and the line y = (-1)/2 over the interval [0^@, 360^@]. Where do the two graphs intersect? Give exact answers in degr

0
530
2

the graph of y = sin x and the line y = (-1)/2 over the interval [0 degree, 360 degree]. Where do the two graphs intersect? Give exact answers in degrees

May 20, 2015

### Best Answer

#1
+20850
+10

the graph of y = sin x and the line y = (-1)/2 over the interval [0 degree, 360 degree]. Where do the two graphs intersect? Give exact answers in degrees

$$\small{\text{ \begin{array}{rcl|rcl}\sin{(x_1)} &=& -\frac12 \qquad & \qquad \sin{(x_1)} &=& \sin{ (180\ensurement{^{\circ}} -x_2) } =-\frac12 \\&&&\\ x_1 &=& \arcsin{( -\frac12 )} \qquad & \qquad \sin{ (180\ensurement{^{\circ}} - x_2) } &=&-\frac12 \\&&&\\x_1 &=& -30\ensurement{^{\circ}} + 360\ensurement{^{\circ}} =330\ensurement{^{\circ}} \qquad & \qquad 180\ensurement{^{\circ}} - x_2 &=& \arcsin(-\frac12) \\&&&\\&& &\qquad x_2 &=& 180\ensurement{^{\circ}}-\arcsin{( -\frac12 )} \\&&&\\&&\qquad & x_2 &=& 180\ensurement{^{\circ}} +30\ensurement{^{\circ}} \\&&&\\&&\qquad & x_2 &=& 210\ensurement{^{\circ}}\\\end{array}}}$$

.
May 20, 2015

### 2+0 Answers

#1
+20850
+10
Best Answer

the graph of y = sin x and the line y = (-1)/2 over the interval [0 degree, 360 degree]. Where do the two graphs intersect? Give exact answers in degrees

$$\small{\text{ \begin{array}{rcl|rcl}\sin{(x_1)} &=& -\frac12 \qquad & \qquad \sin{(x_1)} &=& \sin{ (180\ensurement{^{\circ}} -x_2) } =-\frac12 \\&&&\\ x_1 &=& \arcsin{( -\frac12 )} \qquad & \qquad \sin{ (180\ensurement{^{\circ}} - x_2) } &=&-\frac12 \\&&&\\x_1 &=& -30\ensurement{^{\circ}} + 360\ensurement{^{\circ}} =330\ensurement{^{\circ}} \qquad & \qquad 180\ensurement{^{\circ}} - x_2 &=& \arcsin(-\frac12) \\&&&\\&& &\qquad x_2 &=& 180\ensurement{^{\circ}}-\arcsin{( -\frac12 )} \\&&&\\&&\qquad & x_2 &=& 180\ensurement{^{\circ}} +30\ensurement{^{\circ}} \\&&&\\&&\qquad & x_2 &=& 210\ensurement{^{\circ}}\\\end{array}}}$$

heureka May 20, 2015
#2
+95360
+5

Thanks Heureka,

Here is the graphical solution

https://www.desmos.com/calculator/p5ia0okfnz

May 20, 2015

### New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.