+0  
 
0
668
4
avatar

The lines 3x+y=1 and 5x-y=15 intersect at the center of circle O. If the circle is tangent to the y-axis, find the equation of the circle.

Guest May 27, 2015

Best Answer 

 #2
avatar+20024 
+13

The lines 3x+y=1 and 5x-y=15 intersect at the center of circle O. If the circle is tangent to the y-axis, find the equation of the circle.

$$\\
\small{\text{
(1. Line):
$
\begin{array}{rcl}
\\\\\\
3x + y &=& 1 \\
y &=& \underbrace{-3}_{m_1}x + \underbrace{1}_{b_1} \\
\end{array}
$}} \\
\small{\text{
(2. Line):
$
\begin{array}{rcl}
\\\\\\
5x - y &=& 15 \\
y &=& \underbrace{5}_{m_2}x \underbrace{-15}_{b_2} \\
\end{array}
$}}\\\\
\small{\text{
Intersection:
$
\begin{array}{lcl}
\boxed{
~x_{\rm{intersection}}=- \dfrac{\Delta b}{ \Delta m} = - \dfrac{b_1-b_2}{m_1-m_2} ~
}
\\\\\\
x_{\rm{intersection}}=- \dfrac{1-(-15)}{-3-5} = -\dfrac{16}{-8} = \dfrac{16}{8}= 2\\
y_{\rm{intersection}} = -3x+1 \\
y_{\rm{intersection}} = -3\cdot 2+1\\
y_{\rm{intersection}} = -6+1\\
y_{\rm{intersection}} = -5
\end{array}
$}}\\\\$$

$$\\\small{\text{
Circle center $(x_c,y_c):
\begin{array}{lcl}
\\\\\\
x_c=x_{\rm{intersection}}=2\\
y_c=y_{\rm{intersection}} = -5
\end{array}
$}}\\\\
\small{\text{
Circle radius $r:
\begin{array}{lcl}
\\\\
r= x_c=x_{\rm{intersection}}=2\\
\end{array}
$}}\\\\
\small{\text{
Circle formula:
$
\begin{array}{lcl}
\\\\
(x-x_c)^2+(y-y_c)^2=r^2\\
(x-2)^2+(y+5)^2=2^2=4\\
\end{array}
$}}$$

heureka  May 28, 2015
 #1
avatar+89803 
+10

3x+y=1 and 5x-y=15

 

Using the first equation, y = 1 - 3x    ....and substituting this into the second, we have

 

5x - (1 - 3x) = 15

 

5x -1 + 3x = 15

 

8x - 1  = 15

 

8x = 16

 

x = 2     and y = (1 - 3x) = (1 - 3(2))  = (1 - 6)  = -5

 

So the solution point is (2, -5)

 

And the equation of the circle would be.....

 

(x - 2)^2 + (y + 5)^2  = 4

 

Here's a graph.....https://www.desmos.com/calculator/pt2wwhqn4u

 

 

 

CPhill  May 27, 2015
 #2
avatar+20024 
+13
Best Answer

The lines 3x+y=1 and 5x-y=15 intersect at the center of circle O. If the circle is tangent to the y-axis, find the equation of the circle.

$$\\
\small{\text{
(1. Line):
$
\begin{array}{rcl}
\\\\\\
3x + y &=& 1 \\
y &=& \underbrace{-3}_{m_1}x + \underbrace{1}_{b_1} \\
\end{array}
$}} \\
\small{\text{
(2. Line):
$
\begin{array}{rcl}
\\\\\\
5x - y &=& 15 \\
y &=& \underbrace{5}_{m_2}x \underbrace{-15}_{b_2} \\
\end{array}
$}}\\\\
\small{\text{
Intersection:
$
\begin{array}{lcl}
\boxed{
~x_{\rm{intersection}}=- \dfrac{\Delta b}{ \Delta m} = - \dfrac{b_1-b_2}{m_1-m_2} ~
}
\\\\\\
x_{\rm{intersection}}=- \dfrac{1-(-15)}{-3-5} = -\dfrac{16}{-8} = \dfrac{16}{8}= 2\\
y_{\rm{intersection}} = -3x+1 \\
y_{\rm{intersection}} = -3\cdot 2+1\\
y_{\rm{intersection}} = -6+1\\
y_{\rm{intersection}} = -5
\end{array}
$}}\\\\$$

$$\\\small{\text{
Circle center $(x_c,y_c):
\begin{array}{lcl}
\\\\\\
x_c=x_{\rm{intersection}}=2\\
y_c=y_{\rm{intersection}} = -5
\end{array}
$}}\\\\
\small{\text{
Circle radius $r:
\begin{array}{lcl}
\\\\
r= x_c=x_{\rm{intersection}}=2\\
\end{array}
$}}\\\\
\small{\text{
Circle formula:
$
\begin{array}{lcl}
\\\\
(x-x_c)^2+(y-y_c)^2=r^2\\
(x-2)^2+(y+5)^2=2^2=4\\
\end{array}
$}}$$

heureka  May 28, 2015
 #3
avatar+4664 
0

The Latex is impeccable!

MathsGod1  May 28, 2015
 #4
avatar+93629 
0

Yes, Heureka is the master of LaTex.  His maths is not half bad either LOL  

Thanks Chris and Heureka  

Melody  May 28, 2015

9 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.